Spaces:
Sleeping
Sleeping
| from huggingface_hub import hf_hub_url, hf_hub_download | |
| import gradio as gr | |
| import numpy as np | |
| import requests | |
| import torch | |
| from torchvision import transforms | |
| from torch.autograd import Variable | |
| from PIL import Image | |
| import warnings | |
| warnings.filterwarnings('ignore') | |
| # モデルのダウンロード | |
| path_to_model = hf_hub_download( | |
| repo_id="opetrova/face-frontalization", | |
| filename="generator_v0.pt" | |
| ) | |
| # network.py をカレントディレクトリにダウンロード | |
| network_url = hf_hub_url(repo_id="opetrova/face-frontalization", filename="network.py") | |
| r = requests.get(network_url, allow_redirects=True) | |
| open('network.py', 'wb').write(r.content) | |
| # PyTorch 2.6 以降は weights_only=False を指定しないとエラーになる | |
| saved_model = torch.load(path_to_model, map_location=torch.device("cpu"), weights_only=False) | |
| def frontalize(image): | |
| # 画像を [1, 3, 128, 128] tensor に変換 | |
| preprocess = transforms.Compose(( | |
| transforms.ToPILImage(), | |
| transforms.Resize(size=(128, 128)), | |
| transforms.ToTensor(), | |
| )) | |
| input_tensor = torch.unsqueeze(preprocess(image), 0) | |
| # 推論 | |
| generated_image = saved_model(Variable(input_tensor.type(torch.FloatTensor))) | |
| generated_image = generated_image.detach().squeeze().permute(1, 2, 0).numpy() | |
| generated_image = (generated_image + 1.0) / 2.0 # [-1,1] → [0,1] | |
| return generated_image | |
| # Gradio インターフェース | |
| iface = gr.Interface( | |
| fn=frontalize, | |
| inputs=gr.Image(type="numpy"), | |
| outputs="image", | |
| title="Face Frontalization", | |
| description=( | |
| 'PyTorch implementation of a supervised GAN ' | |
| '(see <a href="https://blog.scaleway.com/gpu-instances-using-deep-learning-to-obtain-frontal-rendering-of-facial-images/">blog post</a>)' | |
| ), | |
| examples=["amos.png", "clarissa.png"], | |
| ) | |
| iface.launch() | |