Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from io import BytesIO | |
| import requests | |
| import PIL | |
| from PIL import Image | |
| import numpy as np | |
| import os | |
| import uuid | |
| import torch | |
| from torch import autocast | |
| import cv2 | |
| from matplotlib import pyplot as plt | |
| from torchvision import transforms | |
| from diffusers import DiffusionPipeline | |
| from PIL import Image, ImageOps | |
| import requests | |
| from io import BytesIO | |
| from transparent_background import Remover | |
| def resize_with_padding(img, expected_size): | |
| img.thumbnail((expected_size[0], expected_size[1])) | |
| delta_width = expected_size[0] - img.size[0] | |
| delta_height = expected_size[1] - img.size[1] | |
| pad_width = delta_width // 2 | |
| pad_height = delta_height // 2 | |
| padding = (pad_width, pad_height, delta_width - pad_width, delta_height - pad_height) | |
| return ImageOps.expand(img, padding) | |
| bird_image = Image.open('bird.jpeg').convert('RGB') | |
| bird_controlnet = Image.open('bird-controlnet.webp').convert('RGB') | |
| bird_sd2 = Image.open('bird-sd2.webp').convert('RGB') | |
| bird_mask = Image.open('bird-mask.webp').convert('RGB') | |
| device = 'cuda' | |
| # Load background detection model | |
| remover = Remover() # default setting | |
| remover = Remover(mode='base') | |
| pipe = DiffusionPipeline.from_pretrained("yahoo-inc/photo-background-generation", custom_pipeline="yahoo-inc/photo-background-generation").to(device) | |
| def read_content(file_path: str) -> str: | |
| """read the content of target file | |
| """ | |
| with open(file_path, 'r', encoding='utf-8') as f: | |
| content = f.read() | |
| return content | |
| def predict(img, prompt="", seed=0): | |
| img = img.convert("RGB") | |
| img = resize_with_padding(img, (512, 512)) | |
| mask = remover.process(img, type='map') | |
| mask = ImageOps.invert(mask) | |
| with torch.autocast("cuda"): | |
| generator = torch.Generator(device='cuda').manual_seed(seed) | |
| output_controlnet = pipe(generator=generator, prompt=prompt, image=img, mask_image=mask, control_image=mask, num_images_per_prompt=1, num_inference_steps=20, guess_mode=False, controlnet_conditioning_scale=1.0, guidance_scale=7.5).images[0] | |
| generator = torch.Generator(device='cuda').manual_seed(seed) | |
| output_sd2 = pipe(generator=generator, prompt=prompt, image=img, mask_image=mask, control_image=mask, num_images_per_prompt=1, num_inference_steps=20, guess_mode=False, controlnet_conditioning_scale=0.0, guidance_scale=7.5).images[0] | |
| torch.cuda.empty_cache() | |
| return output_controlnet, output_sd2, mask | |
| css = ''' | |
| .container {max-width: 1150px;margin: auto;padding-top: 1.5rem} | |
| #image_upload{min-height:400px} | |
| #image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 512px} | |
| #mask_radio .gr-form{background:transparent; border: none} | |
| #word_mask{margin-top: .75em !important} | |
| #word_mask textarea:disabled{opacity: 0.3} | |
| .footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5} | |
| .footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white} | |
| .dark .footer {border-color: #303030} | |
| .dark .footer>p {background: #0b0f19} | |
| .acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%} | |
| #image_upload .touch-none{display: flex} | |
| @keyframes spin { | |
| from { | |
| transform: rotate(0deg); | |
| } | |
| to { | |
| transform: rotate(360deg); | |
| } | |
| } | |
| #share-btn-container { | |
| display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem; | |
| } | |
| #share-btn { | |
| all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important; | |
| } | |
| #share-btn * { | |
| all: unset; | |
| } | |
| #share-btn-container div:nth-child(-n+2){ | |
| width: auto !important; | |
| min-height: 0px !important; | |
| } | |
| #share-btn-container .wrap { | |
| display: none !important; | |
| } | |
| ''' | |
| image_blocks = gr.Blocks(css=css) | |
| with image_blocks as demo: | |
| gr.HTML(read_content("header.html")) | |
| with gr.Group(): | |
| with gr.Row(variant='compact', equal_height=True, ): | |
| with gr.Column(variant='compact', ): | |
| image = gr.Image(value=bird_image, sources=['upload'], elem_id="image_upload", type="pil", label="Upload an image", width=512, height=512) | |
| with gr.Row(variant='compact', elem_id="prompt-container", equal_height=True): | |
| prompt = gr.Textbox(label='prompt', placeholder = 'What you want in the background?', show_label=True, elem_id="input-text") | |
| seed = gr.Number(label="seed", value=13) | |
| btn = gr.Button("Generate Background!") | |
| with gr.Column(variant='compact', ): | |
| controlnet_out = gr.Image(value=bird_controlnet, label="SD2+ControlNet (Ours) Output", elem_id="output-controlnet", width=512, height=512) | |
| with gr.Row(variant='compact', equal_height=True, ): | |
| with gr.Column(variant='compact', ): | |
| mask_out = gr.Image(value=bird_mask, label="Background Mask", elem_id="output-mask", width=512, height=512) | |
| with gr.Column(variant='compact', ): | |
| sd2_out = gr.Image(value=bird_sd2, label="SD2 Output", elem_id="output-sd2", width=512, height=512) | |
| btn.click(fn=predict, inputs=[image, prompt, seed], outputs=[controlnet_out, sd2_out, mask_out ]) | |
| image_blocks.launch() | |