Update app.py
Browse files
app.py
CHANGED
|
@@ -1,362 +1,359 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import torch
|
| 3 |
-
import torchaudio
|
| 4 |
-
import librosa
|
| 5 |
-
from modules.commons import build_model, load_checkpoint, recursive_munch
|
| 6 |
-
import yaml
|
| 7 |
-
from hf_utils import load_custom_model_from_hf
|
| 8 |
-
import numpy as np
|
| 9 |
-
from pydub import AudioSegment
|
| 10 |
-
|
| 11 |
-
# Load model and configuration
|
| 12 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 13 |
-
|
| 14 |
-
dit_checkpoint_path, dit_config_path = load_custom_model_from_hf("Plachta/Seed-VC",
|
| 15 |
-
"DiT_seed_v2_uvit_whisper_small_wavenet_bigvgan_pruned.pth",
|
| 16 |
-
"config_dit_mel_seed_uvit_whisper_small_wavenet.yml")
|
| 17 |
-
config = yaml.safe_load(open(dit_config_path, 'r'))
|
| 18 |
-
model_params = recursive_munch(config['model_params'])
|
| 19 |
-
model = build_model(model_params, stage='DiT')
|
| 20 |
-
hop_length = config['preprocess_params']['spect_params']['hop_length']
|
| 21 |
-
sr = config['preprocess_params']['sr']
|
| 22 |
-
|
| 23 |
-
# Load checkpoints
|
| 24 |
-
model, _, _, _ = load_checkpoint(model, None, dit_checkpoint_path,
|
| 25 |
-
load_only_params=True, ignore_modules=[], is_distributed=False)
|
| 26 |
-
for key in model:
|
| 27 |
-
model[key].eval()
|
| 28 |
-
model[key].to(device)
|
| 29 |
-
model.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)
|
| 30 |
-
|
| 31 |
-
# Load additional modules
|
| 32 |
-
from modules.campplus.DTDNN import CAMPPlus
|
| 33 |
-
|
| 34 |
-
campplus_ckpt_path = load_custom_model_from_hf("funasr/campplus", "campplus_cn_common.bin", config_filename=None)
|
| 35 |
-
campplus_model = CAMPPlus(feat_dim=80, embedding_size=192)
|
| 36 |
-
campplus_model.load_state_dict(torch.load(campplus_ckpt_path, map_location="cpu"))
|
| 37 |
-
campplus_model.eval()
|
| 38 |
-
campplus_model.to(device)
|
| 39 |
-
|
| 40 |
-
from modules.bigvgan import bigvgan
|
| 41 |
-
|
| 42 |
-
bigvgan_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_22khz_80band_256x', use_cuda_kernel=False)
|
| 43 |
-
|
| 44 |
-
# remove weight norm in the model and set to eval mode
|
| 45 |
-
bigvgan_model.remove_weight_norm()
|
| 46 |
-
bigvgan_model = bigvgan_model.eval().to(device)
|
| 47 |
-
|
| 48 |
-
# whisper
|
| 49 |
-
from transformers import AutoFeatureExtractor, WhisperModel
|
| 50 |
-
|
| 51 |
-
whisper_name = model_params.speech_tokenizer.whisper_name if hasattr(model_params.speech_tokenizer,
|
| 52 |
-
'whisper_name') else "openai/whisper-small"
|
| 53 |
-
whisper_model = WhisperModel.from_pretrained(whisper_name, torch_dtype=torch.float16).to(device)
|
| 54 |
-
del whisper_model.decoder
|
| 55 |
-
whisper_feature_extractor = AutoFeatureExtractor.from_pretrained(whisper_name)
|
| 56 |
-
|
| 57 |
-
# Generate mel spectrograms
|
| 58 |
-
mel_fn_args = {
|
| 59 |
-
"n_fft": config['preprocess_params']['spect_params']['n_fft'],
|
| 60 |
-
"win_size": config['preprocess_params']['spect_params']['win_length'],
|
| 61 |
-
"hop_size": config['preprocess_params']['spect_params']['hop_length'],
|
| 62 |
-
"num_mels": config['preprocess_params']['spect_params']['n_mels'],
|
| 63 |
-
"sampling_rate": sr,
|
| 64 |
-
"fmin": 0,
|
| 65 |
-
"fmax": None,
|
| 66 |
-
"center": False
|
| 67 |
-
}
|
| 68 |
-
from modules.audio import mel_spectrogram
|
| 69 |
-
|
| 70 |
-
to_mel = lambda x: mel_spectrogram(x, **mel_fn_args)
|
| 71 |
-
|
| 72 |
-
# f0 conditioned model
|
| 73 |
-
dit_checkpoint_path, dit_config_path = load_custom_model_from_hf("Plachta/Seed-VC",
|
| 74 |
-
"DiT_seed_v2_uvit_whisper_base_f0_44k_bigvgan_pruned_ft_ema.pth",
|
| 75 |
-
"config_dit_mel_seed_uvit_whisper_base_f0_44k.yml")
|
| 76 |
-
|
| 77 |
-
config = yaml.safe_load(open(dit_config_path, 'r'))
|
| 78 |
-
model_params = recursive_munch(config['model_params'])
|
| 79 |
-
model_f0 = build_model(model_params, stage='DiT')
|
| 80 |
-
hop_length = config['preprocess_params']['spect_params']['hop_length']
|
| 81 |
-
sr = config['preprocess_params']['sr']
|
| 82 |
-
|
| 83 |
-
# Load checkpoints
|
| 84 |
-
model_f0, _, _, _ = load_checkpoint(model_f0, None, dit_checkpoint_path,
|
| 85 |
-
load_only_params=True, ignore_modules=[], is_distributed=False)
|
| 86 |
-
for key in model_f0:
|
| 87 |
-
model_f0[key].eval()
|
| 88 |
-
model_f0[key].to(device)
|
| 89 |
-
model_f0.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)
|
| 90 |
-
|
| 91 |
-
# f0 extractor
|
| 92 |
-
from modules.rmvpe import RMVPE
|
| 93 |
-
|
| 94 |
-
model_path = load_custom_model_from_hf("lj1995/VoiceConversionWebUI", "rmvpe.pt", None)
|
| 95 |
-
rmvpe = RMVPE(model_path, is_half=False, device=device)
|
| 96 |
-
|
| 97 |
-
mel_fn_args_f0 = {
|
| 98 |
-
"n_fft": config['preprocess_params']['spect_params']['n_fft'],
|
| 99 |
-
"win_size": config['preprocess_params']['spect_params']['win_length'],
|
| 100 |
-
"hop_size": config['preprocess_params']['spect_params']['hop_length'],
|
| 101 |
-
"num_mels": config['preprocess_params']['spect_params']['n_mels'],
|
| 102 |
-
"sampling_rate": sr,
|
| 103 |
-
"fmin": 0,
|
| 104 |
-
"fmax": None,
|
| 105 |
-
"center": False
|
| 106 |
-
}
|
| 107 |
-
to_mel_f0 = lambda x: mel_spectrogram(x, **mel_fn_args_f0)
|
| 108 |
-
bigvgan_44k_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_44khz_128band_512x', use_cuda_kernel=False)
|
| 109 |
-
|
| 110 |
-
# remove weight norm in the model and set to eval mode
|
| 111 |
-
bigvgan_44k_model.remove_weight_norm()
|
| 112 |
-
bigvgan_44k_model = bigvgan_44k_model.eval().to(device)
|
| 113 |
-
|
| 114 |
-
def adjust_f0_semitones(f0_sequence, n_semitones):
|
| 115 |
-
factor = 2 ** (n_semitones / 12)
|
| 116 |
-
return f0_sequence * factor
|
| 117 |
-
|
| 118 |
-
def crossfade(chunk1, chunk2, overlap):
|
| 119 |
-
fade_out = np.cos(np.linspace(0, np.pi / 2, overlap)) ** 2
|
| 120 |
-
fade_in = np.cos(np.linspace(np.pi / 2, 0, overlap)) ** 2
|
| 121 |
-
if len(chunk2) < overlap:
|
| 122 |
-
chunk2[:overlap] = chunk2[:overlap] * fade_in[:len(chunk2)] + (chunk1[-overlap:] * fade_out)[:len(chunk2)]
|
| 123 |
-
else:
|
| 124 |
-
chunk2[:overlap] = chunk2[:overlap] * fade_in + chunk1[-overlap:] * fade_out
|
| 125 |
-
return chunk2
|
| 126 |
-
|
| 127 |
-
# streaming and chunk processing related params
|
| 128 |
-
overlap_frame_len = 16
|
| 129 |
-
bitrate = "320k"
|
| 130 |
-
|
| 131 |
-
@torch.no_grad()
|
| 132 |
-
@torch.inference_mode()
|
| 133 |
-
def voice_conversion(source, target, diffusion_steps, length_adjust, inference_cfg_rate, f0_condition, auto_f0_adjust, pitch_shift):
|
| 134 |
-
inference_module = model if not f0_condition else model_f0
|
| 135 |
-
mel_fn = to_mel if not f0_condition else to_mel_f0
|
| 136 |
-
bigvgan_fn = bigvgan_model if not f0_condition else bigvgan_44k_model
|
| 137 |
-
sr = 22050 if not f0_condition else 44100
|
| 138 |
-
hop_length = 256 if not f0_condition else 512
|
| 139 |
-
max_context_window = sr // hop_length * 30
|
| 140 |
-
overlap_wave_len = overlap_frame_len * hop_length
|
| 141 |
-
# Load audio
|
| 142 |
-
source_audio = librosa.load(source, sr=sr)[0]
|
| 143 |
-
ref_audio = librosa.load(target, sr=sr)[0]
|
| 144 |
-
|
| 145 |
-
# Process audio
|
| 146 |
-
source_audio = torch.tensor(source_audio).unsqueeze(0).float().to(device)
|
| 147 |
-
ref_audio = torch.tensor(ref_audio[:sr * 25]).unsqueeze(0).float().to(device)
|
| 148 |
-
|
| 149 |
-
# Resample
|
| 150 |
-
ref_waves_16k = torchaudio.functional.resample(ref_audio, sr, 16000)
|
| 151 |
-
converted_waves_16k = torchaudio.functional.resample(source_audio, sr, 16000)
|
| 152 |
-
# if source audio less than 30 seconds, whisper can handle in one forward
|
| 153 |
-
if converted_waves_16k.size(-1) <= 16000 * 30:
|
| 154 |
-
alt_inputs = whisper_feature_extractor([converted_waves_16k.squeeze(0).cpu().numpy()],
|
| 155 |
-
return_tensors="pt",
|
| 156 |
-
return_attention_mask=True,
|
| 157 |
-
sampling_rate=16000)
|
| 158 |
-
alt_input_features = whisper_model._mask_input_features(
|
| 159 |
-
alt_inputs.input_features, attention_mask=alt_inputs.attention_mask).to(device)
|
| 160 |
-
alt_outputs = whisper_model.encoder(
|
| 161 |
-
alt_input_features.to(whisper_model.encoder.dtype),
|
| 162 |
-
head_mask=None,
|
| 163 |
-
output_attentions=False,
|
| 164 |
-
output_hidden_states=False,
|
| 165 |
-
return_dict=True,
|
| 166 |
-
)
|
| 167 |
-
S_alt = alt_outputs.last_hidden_state.to(torch.float32)
|
| 168 |
-
S_alt = S_alt[:, :converted_waves_16k.size(-1) // 320 + 1]
|
| 169 |
-
else:
|
| 170 |
-
overlapping_time = 5 # 5 seconds
|
| 171 |
-
S_alt_list = []
|
| 172 |
-
buffer = None
|
| 173 |
-
traversed_time = 0
|
| 174 |
-
while traversed_time < converted_waves_16k.size(-1):
|
| 175 |
-
if buffer is None: # first chunk
|
| 176 |
-
chunk = converted_waves_16k[:, traversed_time:traversed_time + 16000 * 30]
|
| 177 |
-
else:
|
| 178 |
-
chunk = torch.cat([buffer, converted_waves_16k[:, traversed_time:traversed_time + 16000 * (30 - overlapping_time)]], dim=-1)
|
| 179 |
-
alt_inputs = whisper_feature_extractor([chunk.squeeze(0).cpu().numpy()],
|
| 180 |
-
return_tensors="pt",
|
| 181 |
-
return_attention_mask=True,
|
| 182 |
-
sampling_rate=16000)
|
| 183 |
-
alt_input_features = whisper_model._mask_input_features(
|
| 184 |
-
alt_inputs.input_features, attention_mask=alt_inputs.attention_mask).to(device)
|
| 185 |
-
alt_outputs = whisper_model.encoder(
|
| 186 |
-
alt_input_features.to(whisper_model.encoder.dtype),
|
| 187 |
-
head_mask=None,
|
| 188 |
-
output_attentions=False,
|
| 189 |
-
output_hidden_states=False,
|
| 190 |
-
return_dict=True,
|
| 191 |
-
)
|
| 192 |
-
S_alt = alt_outputs.last_hidden_state.to(torch.float32)
|
| 193 |
-
S_alt = S_alt[:, :chunk.size(-1) // 320 + 1]
|
| 194 |
-
if traversed_time == 0:
|
| 195 |
-
S_alt_list.append(S_alt)
|
| 196 |
-
else:
|
| 197 |
-
S_alt_list.append(S_alt[:, 50 * overlapping_time:])
|
| 198 |
-
buffer = chunk[:, -16000 * overlapping_time:]
|
| 199 |
-
traversed_time += 30 * 16000 if traversed_time == 0 else chunk.size(-1) - 16000 * overlapping_time
|
| 200 |
-
S_alt = torch.cat(S_alt_list, dim=1)
|
| 201 |
-
|
| 202 |
-
ori_waves_16k = torchaudio.functional.resample(ref_audio, sr, 16000)
|
| 203 |
-
ori_inputs = whisper_feature_extractor([ori_waves_16k.squeeze(0).cpu().numpy()],
|
| 204 |
-
return_tensors="pt",
|
| 205 |
-
return_attention_mask=True)
|
| 206 |
-
ori_input_features = whisper_model._mask_input_features(
|
| 207 |
-
ori_inputs.input_features, attention_mask=ori_inputs.attention_mask).to(device)
|
| 208 |
-
with torch.no_grad():
|
| 209 |
-
ori_outputs = whisper_model.encoder(
|
| 210 |
-
ori_input_features.to(whisper_model.encoder.dtype),
|
| 211 |
-
head_mask=None,
|
| 212 |
-
output_attentions=False,
|
| 213 |
-
output_hidden_states=False,
|
| 214 |
-
return_dict=True,
|
| 215 |
-
)
|
| 216 |
-
S_ori = ori_outputs.last_hidden_state.to(torch.float32)
|
| 217 |
-
S_ori = S_ori[:, :ori_waves_16k.size(-1) // 320 + 1]
|
| 218 |
-
|
| 219 |
-
mel = mel_fn(source_audio.to(device).float())
|
| 220 |
-
mel2 = mel_fn(ref_audio.to(device).float())
|
| 221 |
-
|
| 222 |
-
target_lengths = torch.LongTensor([int(mel.size(2) * length_adjust)]).to(mel.device)
|
| 223 |
-
target2_lengths = torch.LongTensor([mel2.size(2)]).to(mel2.device)
|
| 224 |
-
|
| 225 |
-
feat2 = torchaudio.compliance.kaldi.fbank(ref_waves_16k,
|
| 226 |
-
num_mel_bins=80,
|
| 227 |
-
dither=0,
|
| 228 |
-
sample_frequency=16000)
|
| 229 |
-
feat2 = feat2 - feat2.mean(dim=0, keepdim=True)
|
| 230 |
-
style2 = campplus_model(feat2.unsqueeze(0))
|
| 231 |
-
|
| 232 |
-
if f0_condition:
|
| 233 |
-
F0_ori = rmvpe.infer_from_audio(ref_waves_16k[0], thred=0.03)
|
| 234 |
-
F0_alt = rmvpe.infer_from_audio(converted_waves_16k[0], thred=0.03)
|
| 235 |
-
|
| 236 |
-
F0_ori = torch.from_numpy(F0_ori).to(device)[None]
|
| 237 |
-
F0_alt = torch.from_numpy(F0_alt).to(device)[None]
|
| 238 |
-
|
| 239 |
-
voiced_F0_ori = F0_ori[F0_ori > 1]
|
| 240 |
-
voiced_F0_alt = F0_alt[F0_alt > 1]
|
| 241 |
-
|
| 242 |
-
log_f0_alt = torch.log(F0_alt + 1e-5)
|
| 243 |
-
voiced_log_f0_ori = torch.log(voiced_F0_ori + 1e-5)
|
| 244 |
-
voiced_log_f0_alt = torch.log(voiced_F0_alt + 1e-5)
|
| 245 |
-
median_log_f0_ori = torch.median(voiced_log_f0_ori)
|
| 246 |
-
median_log_f0_alt = torch.median(voiced_log_f0_alt)
|
| 247 |
-
|
| 248 |
-
# shift alt log f0 level to ori log f0 level
|
| 249 |
-
shifted_log_f0_alt = log_f0_alt.clone()
|
| 250 |
-
if auto_f0_adjust:
|
| 251 |
-
shifted_log_f0_alt[F0_alt > 1] = log_f0_alt[F0_alt > 1] - median_log_f0_alt + median_log_f0_ori
|
| 252 |
-
shifted_f0_alt = torch.exp(shifted_log_f0_alt)
|
| 253 |
-
if pitch_shift != 0:
|
| 254 |
-
shifted_f0_alt[F0_alt > 1] = adjust_f0_semitones(shifted_f0_alt[F0_alt > 1], pitch_shift)
|
| 255 |
-
else:
|
| 256 |
-
F0_ori = None
|
| 257 |
-
F0_alt = None
|
| 258 |
-
shifted_f0_alt = None
|
| 259 |
-
|
| 260 |
-
# Length regulation
|
| 261 |
-
cond, _, codes, commitment_loss, codebook_loss = inference_module.length_regulator(S_alt, ylens=target_lengths, n_quantizers=3, f0=shifted_f0_alt)
|
| 262 |
-
prompt_condition, _, codes, commitment_loss, codebook_loss = inference_module.length_regulator(S_ori, ylens=target2_lengths, n_quantizers=3, f0=F0_ori)
|
| 263 |
-
|
| 264 |
-
max_source_window = max_context_window - mel2.size(2)
|
| 265 |
-
# split source condition (cond) into chunks
|
| 266 |
-
processed_frames = 0
|
| 267 |
-
generated_wave_chunks = []
|
| 268 |
-
# generate chunk by chunk and stream the output
|
| 269 |
-
while processed_frames < cond.size(1):
|
| 270 |
-
chunk_cond = cond[:, processed_frames:processed_frames + max_source_window]
|
| 271 |
-
is_last_chunk = processed_frames + max_source_window >= cond.size(1)
|
| 272 |
-
cat_condition = torch.cat([prompt_condition, chunk_cond], dim=1)
|
| 273 |
-
with torch.autocast(device_type=device.type, dtype=torch.float16):
|
| 274 |
-
# Voice Conversion
|
| 275 |
-
vc_target = inference_module.cfm.inference(cat_condition,
|
| 276 |
-
torch.LongTensor([cat_condition.size(1)]).to(mel2.device),
|
| 277 |
-
mel2, style2, None, diffusion_steps,
|
| 278 |
-
inference_cfg_rate=inference_cfg_rate)
|
| 279 |
-
vc_target = vc_target[:, :, mel2.size(-1):]
|
| 280 |
-
vc_wave = bigvgan_fn(vc_target.float())[0]
|
| 281 |
-
if processed_frames == 0:
|
| 282 |
-
if is_last_chunk:
|
| 283 |
-
output_wave = vc_wave[0].cpu().numpy()
|
| 284 |
-
generated_wave_chunks.append(output_wave)
|
| 285 |
-
output_wave = (output_wave * 32768.0).astype(np.int16)
|
| 286 |
-
mp3_bytes = AudioSegment(
|
| 287 |
-
output_wave.tobytes(), frame_rate=sr,
|
| 288 |
-
sample_width=output_wave.dtype.itemsize, channels=1
|
| 289 |
-
).export(format="mp3", bitrate=bitrate).read()
|
| 290 |
-
yield mp3_bytes, (sr, np.concatenate(generated_wave_chunks))
|
| 291 |
-
break
|
| 292 |
-
output_wave = vc_wave[0, :-overlap_wave_len].cpu().numpy()
|
| 293 |
-
generated_wave_chunks.append(output_wave)
|
| 294 |
-
previous_chunk = vc_wave[0, -overlap_wave_len:]
|
| 295 |
-
processed_frames += vc_target.size(2) - overlap_frame_len
|
| 296 |
-
output_wave = (output_wave * 32768.0).astype(np.int16)
|
| 297 |
-
mp3_bytes = AudioSegment(
|
| 298 |
-
output_wave.tobytes(), frame_rate=sr,
|
| 299 |
-
sample_width=output_wave.dtype.itemsize, channels=1
|
| 300 |
-
).export(format="mp3", bitrate=bitrate).read()
|
| 301 |
-
yield mp3_bytes, None
|
| 302 |
-
elif is_last_chunk:
|
| 303 |
-
output_wave = crossfade(previous_chunk.cpu().numpy(), vc_wave[0].cpu().numpy(), overlap_wave_len)
|
| 304 |
-
generated_wave_chunks.append(output_wave)
|
| 305 |
-
processed_frames += vc_target.size(2) - overlap_frame_len
|
| 306 |
-
output_wave = (output_wave * 32768.0).astype(np.int16)
|
| 307 |
-
mp3_bytes = AudioSegment(
|
| 308 |
-
output_wave.tobytes(), frame_rate=sr,
|
| 309 |
-
sample_width=output_wave.dtype.itemsize, channels=1
|
| 310 |
-
).export(format="mp3", bitrate=bitrate).read()
|
| 311 |
-
yield mp3_bytes, (sr, np.concatenate(generated_wave_chunks))
|
| 312 |
-
break
|
| 313 |
-
else:
|
| 314 |
-
output_wave = crossfade(previous_chunk.cpu().numpy(), vc_wave[0, :-overlap_wave_len].cpu().numpy(), overlap_wave_len)
|
| 315 |
-
generated_wave_chunks.append(output_wave)
|
| 316 |
-
previous_chunk = vc_wave[0, -overlap_wave_len:]
|
| 317 |
-
processed_frames += vc_target.size(2) - overlap_frame_len
|
| 318 |
-
output_wave = (output_wave * 32768.0).astype(np.int16)
|
| 319 |
-
mp3_bytes = AudioSegment(
|
| 320 |
-
output_wave.tobytes(), frame_rate=sr,
|
| 321 |
-
sample_width=output_wave.dtype.itemsize, channels=1
|
| 322 |
-
).export(format="mp3", bitrate=bitrate).read()
|
| 323 |
-
yield mp3_bytes, None
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
if __name__ == "__main__":
|
| 327 |
-
description = ("Zero-shot
|
| 328 |
-
"
|
| 329 |
-
"
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
gr.
|
| 334 |
-
gr.
|
| 335 |
-
gr.Slider(minimum=
|
| 336 |
-
gr.
|
| 337 |
-
gr.
|
| 338 |
-
gr.
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
["examples/source/
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
title="Seed Voice Conversion",
|
| 360 |
-
examples=examples,
|
| 361 |
-
cache_examples=False,
|
| 362 |
).launch()
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import torchaudio
|
| 4 |
+
import librosa
|
| 5 |
+
from modules.commons import build_model, load_checkpoint, recursive_munch
|
| 6 |
+
import yaml
|
| 7 |
+
from hf_utils import load_custom_model_from_hf
|
| 8 |
+
import numpy as np
|
| 9 |
+
from pydub import AudioSegment
|
| 10 |
+
|
| 11 |
+
# Load model and configuration
|
| 12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 13 |
+
|
| 14 |
+
dit_checkpoint_path, dit_config_path = load_custom_model_from_hf("Plachta/Seed-VC",
|
| 15 |
+
"DiT_seed_v2_uvit_whisper_small_wavenet_bigvgan_pruned.pth",
|
| 16 |
+
"config_dit_mel_seed_uvit_whisper_small_wavenet.yml")
|
| 17 |
+
config = yaml.safe_load(open(dit_config_path, 'r'))
|
| 18 |
+
model_params = recursive_munch(config['model_params'])
|
| 19 |
+
model = build_model(model_params, stage='DiT')
|
| 20 |
+
hop_length = config['preprocess_params']['spect_params']['hop_length']
|
| 21 |
+
sr = config['preprocess_params']['sr']
|
| 22 |
+
|
| 23 |
+
# Load checkpoints
|
| 24 |
+
model, _, _, _ = load_checkpoint(model, None, dit_checkpoint_path,
|
| 25 |
+
load_only_params=True, ignore_modules=[], is_distributed=False)
|
| 26 |
+
for key in model:
|
| 27 |
+
model[key].eval()
|
| 28 |
+
model[key].to(device)
|
| 29 |
+
model.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)
|
| 30 |
+
|
| 31 |
+
# Load additional modules
|
| 32 |
+
from modules.campplus.DTDNN import CAMPPlus
|
| 33 |
+
|
| 34 |
+
campplus_ckpt_path = load_custom_model_from_hf("funasr/campplus", "campplus_cn_common.bin", config_filename=None)
|
| 35 |
+
campplus_model = CAMPPlus(feat_dim=80, embedding_size=192)
|
| 36 |
+
campplus_model.load_state_dict(torch.load(campplus_ckpt_path, map_location="cpu"))
|
| 37 |
+
campplus_model.eval()
|
| 38 |
+
campplus_model.to(device)
|
| 39 |
+
|
| 40 |
+
from modules.bigvgan import bigvgan
|
| 41 |
+
|
| 42 |
+
bigvgan_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_22khz_80band_256x', use_cuda_kernel=False)
|
| 43 |
+
|
| 44 |
+
# remove weight norm in the model and set to eval mode
|
| 45 |
+
bigvgan_model.remove_weight_norm()
|
| 46 |
+
bigvgan_model = bigvgan_model.eval().to(device)
|
| 47 |
+
|
| 48 |
+
# whisper
|
| 49 |
+
from transformers import AutoFeatureExtractor, WhisperModel
|
| 50 |
+
|
| 51 |
+
whisper_name = model_params.speech_tokenizer.whisper_name if hasattr(model_params.speech_tokenizer,
|
| 52 |
+
'whisper_name') else "openai/whisper-small"
|
| 53 |
+
whisper_model = WhisperModel.from_pretrained(whisper_name, torch_dtype=torch.float16).to(device)
|
| 54 |
+
del whisper_model.decoder
|
| 55 |
+
whisper_feature_extractor = AutoFeatureExtractor.from_pretrained(whisper_name)
|
| 56 |
+
|
| 57 |
+
# Generate mel spectrograms
|
| 58 |
+
mel_fn_args = {
|
| 59 |
+
"n_fft": config['preprocess_params']['spect_params']['n_fft'],
|
| 60 |
+
"win_size": config['preprocess_params']['spect_params']['win_length'],
|
| 61 |
+
"hop_size": config['preprocess_params']['spect_params']['hop_length'],
|
| 62 |
+
"num_mels": config['preprocess_params']['spect_params']['n_mels'],
|
| 63 |
+
"sampling_rate": sr,
|
| 64 |
+
"fmin": 0,
|
| 65 |
+
"fmax": None,
|
| 66 |
+
"center": False
|
| 67 |
+
}
|
| 68 |
+
from modules.audio import mel_spectrogram
|
| 69 |
+
|
| 70 |
+
to_mel = lambda x: mel_spectrogram(x, **mel_fn_args)
|
| 71 |
+
|
| 72 |
+
# f0 conditioned model
|
| 73 |
+
dit_checkpoint_path, dit_config_path = load_custom_model_from_hf("Plachta/Seed-VC",
|
| 74 |
+
"DiT_seed_v2_uvit_whisper_base_f0_44k_bigvgan_pruned_ft_ema.pth",
|
| 75 |
+
"config_dit_mel_seed_uvit_whisper_base_f0_44k.yml")
|
| 76 |
+
|
| 77 |
+
config = yaml.safe_load(open(dit_config_path, 'r'))
|
| 78 |
+
model_params = recursive_munch(config['model_params'])
|
| 79 |
+
model_f0 = build_model(model_params, stage='DiT')
|
| 80 |
+
hop_length = config['preprocess_params']['spect_params']['hop_length']
|
| 81 |
+
sr = config['preprocess_params']['sr']
|
| 82 |
+
|
| 83 |
+
# Load checkpoints
|
| 84 |
+
model_f0, _, _, _ = load_checkpoint(model_f0, None, dit_checkpoint_path,
|
| 85 |
+
load_only_params=True, ignore_modules=[], is_distributed=False)
|
| 86 |
+
for key in model_f0:
|
| 87 |
+
model_f0[key].eval()
|
| 88 |
+
model_f0[key].to(device)
|
| 89 |
+
model_f0.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192)
|
| 90 |
+
|
| 91 |
+
# f0 extractor
|
| 92 |
+
from modules.rmvpe import RMVPE
|
| 93 |
+
|
| 94 |
+
model_path = load_custom_model_from_hf("lj1995/VoiceConversionWebUI", "rmvpe.pt", None)
|
| 95 |
+
rmvpe = RMVPE(model_path, is_half=False, device=device)
|
| 96 |
+
|
| 97 |
+
mel_fn_args_f0 = {
|
| 98 |
+
"n_fft": config['preprocess_params']['spect_params']['n_fft'],
|
| 99 |
+
"win_size": config['preprocess_params']['spect_params']['win_length'],
|
| 100 |
+
"hop_size": config['preprocess_params']['spect_params']['hop_length'],
|
| 101 |
+
"num_mels": config['preprocess_params']['spect_params']['n_mels'],
|
| 102 |
+
"sampling_rate": sr,
|
| 103 |
+
"fmin": 0,
|
| 104 |
+
"fmax": None,
|
| 105 |
+
"center": False
|
| 106 |
+
}
|
| 107 |
+
to_mel_f0 = lambda x: mel_spectrogram(x, **mel_fn_args_f0)
|
| 108 |
+
bigvgan_44k_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_44khz_128band_512x', use_cuda_kernel=False)
|
| 109 |
+
|
| 110 |
+
# remove weight norm in the model and set to eval mode
|
| 111 |
+
bigvgan_44k_model.remove_weight_norm()
|
| 112 |
+
bigvgan_44k_model = bigvgan_44k_model.eval().to(device)
|
| 113 |
+
|
| 114 |
+
def adjust_f0_semitones(f0_sequence, n_semitones):
|
| 115 |
+
factor = 2 ** (n_semitones / 12)
|
| 116 |
+
return f0_sequence * factor
|
| 117 |
+
|
| 118 |
+
def crossfade(chunk1, chunk2, overlap):
|
| 119 |
+
fade_out = np.cos(np.linspace(0, np.pi / 2, overlap)) ** 2
|
| 120 |
+
fade_in = np.cos(np.linspace(np.pi / 2, 0, overlap)) ** 2
|
| 121 |
+
if len(chunk2) < overlap:
|
| 122 |
+
chunk2[:overlap] = chunk2[:overlap] * fade_in[:len(chunk2)] + (chunk1[-overlap:] * fade_out)[:len(chunk2)]
|
| 123 |
+
else:
|
| 124 |
+
chunk2[:overlap] = chunk2[:overlap] * fade_in + chunk1[-overlap:] * fade_out
|
| 125 |
+
return chunk2
|
| 126 |
+
|
| 127 |
+
# streaming and chunk processing related params
|
| 128 |
+
overlap_frame_len = 16
|
| 129 |
+
bitrate = "320k"
|
| 130 |
+
|
| 131 |
+
@torch.no_grad()
|
| 132 |
+
@torch.inference_mode()
|
| 133 |
+
def voice_conversion(source, target, diffusion_steps, length_adjust, inference_cfg_rate, f0_condition, auto_f0_adjust, pitch_shift):
|
| 134 |
+
inference_module = model if not f0_condition else model_f0
|
| 135 |
+
mel_fn = to_mel if not f0_condition else to_mel_f0
|
| 136 |
+
bigvgan_fn = bigvgan_model if not f0_condition else bigvgan_44k_model
|
| 137 |
+
sr = 22050 if not f0_condition else 44100
|
| 138 |
+
hop_length = 256 if not f0_condition else 512
|
| 139 |
+
max_context_window = sr // hop_length * 30
|
| 140 |
+
overlap_wave_len = overlap_frame_len * hop_length
|
| 141 |
+
# Load audio
|
| 142 |
+
source_audio = librosa.load(source, sr=sr)[0]
|
| 143 |
+
ref_audio = librosa.load(target, sr=sr)[0]
|
| 144 |
+
|
| 145 |
+
# Process audio
|
| 146 |
+
source_audio = torch.tensor(source_audio).unsqueeze(0).float().to(device)
|
| 147 |
+
ref_audio = torch.tensor(ref_audio[:sr * 25]).unsqueeze(0).float().to(device)
|
| 148 |
+
|
| 149 |
+
# Resample
|
| 150 |
+
ref_waves_16k = torchaudio.functional.resample(ref_audio, sr, 16000)
|
| 151 |
+
converted_waves_16k = torchaudio.functional.resample(source_audio, sr, 16000)
|
| 152 |
+
# if source audio less than 30 seconds, whisper can handle in one forward
|
| 153 |
+
if converted_waves_16k.size(-1) <= 16000 * 30:
|
| 154 |
+
alt_inputs = whisper_feature_extractor([converted_waves_16k.squeeze(0).cpu().numpy()],
|
| 155 |
+
return_tensors="pt",
|
| 156 |
+
return_attention_mask=True,
|
| 157 |
+
sampling_rate=16000)
|
| 158 |
+
alt_input_features = whisper_model._mask_input_features(
|
| 159 |
+
alt_inputs.input_features, attention_mask=alt_inputs.attention_mask).to(device)
|
| 160 |
+
alt_outputs = whisper_model.encoder(
|
| 161 |
+
alt_input_features.to(whisper_model.encoder.dtype),
|
| 162 |
+
head_mask=None,
|
| 163 |
+
output_attentions=False,
|
| 164 |
+
output_hidden_states=False,
|
| 165 |
+
return_dict=True,
|
| 166 |
+
)
|
| 167 |
+
S_alt = alt_outputs.last_hidden_state.to(torch.float32)
|
| 168 |
+
S_alt = S_alt[:, :converted_waves_16k.size(-1) // 320 + 1]
|
| 169 |
+
else:
|
| 170 |
+
overlapping_time = 5 # 5 seconds
|
| 171 |
+
S_alt_list = []
|
| 172 |
+
buffer = None
|
| 173 |
+
traversed_time = 0
|
| 174 |
+
while traversed_time < converted_waves_16k.size(-1):
|
| 175 |
+
if buffer is None: # first chunk
|
| 176 |
+
chunk = converted_waves_16k[:, traversed_time:traversed_time + 16000 * 30]
|
| 177 |
+
else:
|
| 178 |
+
chunk = torch.cat([buffer, converted_waves_16k[:, traversed_time:traversed_time + 16000 * (30 - overlapping_time)]], dim=-1)
|
| 179 |
+
alt_inputs = whisper_feature_extractor([chunk.squeeze(0).cpu().numpy()],
|
| 180 |
+
return_tensors="pt",
|
| 181 |
+
return_attention_mask=True,
|
| 182 |
+
sampling_rate=16000)
|
| 183 |
+
alt_input_features = whisper_model._mask_input_features(
|
| 184 |
+
alt_inputs.input_features, attention_mask=alt_inputs.attention_mask).to(device)
|
| 185 |
+
alt_outputs = whisper_model.encoder(
|
| 186 |
+
alt_input_features.to(whisper_model.encoder.dtype),
|
| 187 |
+
head_mask=None,
|
| 188 |
+
output_attentions=False,
|
| 189 |
+
output_hidden_states=False,
|
| 190 |
+
return_dict=True,
|
| 191 |
+
)
|
| 192 |
+
S_alt = alt_outputs.last_hidden_state.to(torch.float32)
|
| 193 |
+
S_alt = S_alt[:, :chunk.size(-1) // 320 + 1]
|
| 194 |
+
if traversed_time == 0:
|
| 195 |
+
S_alt_list.append(S_alt)
|
| 196 |
+
else:
|
| 197 |
+
S_alt_list.append(S_alt[:, 50 * overlapping_time:])
|
| 198 |
+
buffer = chunk[:, -16000 * overlapping_time:]
|
| 199 |
+
traversed_time += 30 * 16000 if traversed_time == 0 else chunk.size(-1) - 16000 * overlapping_time
|
| 200 |
+
S_alt = torch.cat(S_alt_list, dim=1)
|
| 201 |
+
|
| 202 |
+
ori_waves_16k = torchaudio.functional.resample(ref_audio, sr, 16000)
|
| 203 |
+
ori_inputs = whisper_feature_extractor([ori_waves_16k.squeeze(0).cpu().numpy()],
|
| 204 |
+
return_tensors="pt",
|
| 205 |
+
return_attention_mask=True)
|
| 206 |
+
ori_input_features = whisper_model._mask_input_features(
|
| 207 |
+
ori_inputs.input_features, attention_mask=ori_inputs.attention_mask).to(device)
|
| 208 |
+
with torch.no_grad():
|
| 209 |
+
ori_outputs = whisper_model.encoder(
|
| 210 |
+
ori_input_features.to(whisper_model.encoder.dtype),
|
| 211 |
+
head_mask=None,
|
| 212 |
+
output_attentions=False,
|
| 213 |
+
output_hidden_states=False,
|
| 214 |
+
return_dict=True,
|
| 215 |
+
)
|
| 216 |
+
S_ori = ori_outputs.last_hidden_state.to(torch.float32)
|
| 217 |
+
S_ori = S_ori[:, :ori_waves_16k.size(-1) // 320 + 1]
|
| 218 |
+
|
| 219 |
+
mel = mel_fn(source_audio.to(device).float())
|
| 220 |
+
mel2 = mel_fn(ref_audio.to(device).float())
|
| 221 |
+
|
| 222 |
+
target_lengths = torch.LongTensor([int(mel.size(2) * length_adjust)]).to(mel.device)
|
| 223 |
+
target2_lengths = torch.LongTensor([mel2.size(2)]).to(mel2.device)
|
| 224 |
+
|
| 225 |
+
feat2 = torchaudio.compliance.kaldi.fbank(ref_waves_16k,
|
| 226 |
+
num_mel_bins=80,
|
| 227 |
+
dither=0,
|
| 228 |
+
sample_frequency=16000)
|
| 229 |
+
feat2 = feat2 - feat2.mean(dim=0, keepdim=True)
|
| 230 |
+
style2 = campplus_model(feat2.unsqueeze(0))
|
| 231 |
+
|
| 232 |
+
if f0_condition:
|
| 233 |
+
F0_ori = rmvpe.infer_from_audio(ref_waves_16k[0], thred=0.03)
|
| 234 |
+
F0_alt = rmvpe.infer_from_audio(converted_waves_16k[0], thred=0.03)
|
| 235 |
+
|
| 236 |
+
F0_ori = torch.from_numpy(F0_ori).to(device)[None]
|
| 237 |
+
F0_alt = torch.from_numpy(F0_alt).to(device)[None]
|
| 238 |
+
|
| 239 |
+
voiced_F0_ori = F0_ori[F0_ori > 1]
|
| 240 |
+
voiced_F0_alt = F0_alt[F0_alt > 1]
|
| 241 |
+
|
| 242 |
+
log_f0_alt = torch.log(F0_alt + 1e-5)
|
| 243 |
+
voiced_log_f0_ori = torch.log(voiced_F0_ori + 1e-5)
|
| 244 |
+
voiced_log_f0_alt = torch.log(voiced_F0_alt + 1e-5)
|
| 245 |
+
median_log_f0_ori = torch.median(voiced_log_f0_ori)
|
| 246 |
+
median_log_f0_alt = torch.median(voiced_log_f0_alt)
|
| 247 |
+
|
| 248 |
+
# shift alt log f0 level to ori log f0 level
|
| 249 |
+
shifted_log_f0_alt = log_f0_alt.clone()
|
| 250 |
+
if auto_f0_adjust:
|
| 251 |
+
shifted_log_f0_alt[F0_alt > 1] = log_f0_alt[F0_alt > 1] - median_log_f0_alt + median_log_f0_ori
|
| 252 |
+
shifted_f0_alt = torch.exp(shifted_log_f0_alt)
|
| 253 |
+
if pitch_shift != 0:
|
| 254 |
+
shifted_f0_alt[F0_alt > 1] = adjust_f0_semitones(shifted_f0_alt[F0_alt > 1], pitch_shift)
|
| 255 |
+
else:
|
| 256 |
+
F0_ori = None
|
| 257 |
+
F0_alt = None
|
| 258 |
+
shifted_f0_alt = None
|
| 259 |
+
|
| 260 |
+
# Length regulation
|
| 261 |
+
cond, _, codes, commitment_loss, codebook_loss = inference_module.length_regulator(S_alt, ylens=target_lengths, n_quantizers=3, f0=shifted_f0_alt)
|
| 262 |
+
prompt_condition, _, codes, commitment_loss, codebook_loss = inference_module.length_regulator(S_ori, ylens=target2_lengths, n_quantizers=3, f0=F0_ori)
|
| 263 |
+
|
| 264 |
+
max_source_window = max_context_window - mel2.size(2)
|
| 265 |
+
# split source condition (cond) into chunks
|
| 266 |
+
processed_frames = 0
|
| 267 |
+
generated_wave_chunks = []
|
| 268 |
+
# generate chunk by chunk and stream the output
|
| 269 |
+
while processed_frames < cond.size(1):
|
| 270 |
+
chunk_cond = cond[:, processed_frames:processed_frames + max_source_window]
|
| 271 |
+
is_last_chunk = processed_frames + max_source_window >= cond.size(1)
|
| 272 |
+
cat_condition = torch.cat([prompt_condition, chunk_cond], dim=1)
|
| 273 |
+
with torch.autocast(device_type=device.type, dtype=torch.float16):
|
| 274 |
+
# Voice Conversion
|
| 275 |
+
vc_target = inference_module.cfm.inference(cat_condition,
|
| 276 |
+
torch.LongTensor([cat_condition.size(1)]).to(mel2.device),
|
| 277 |
+
mel2, style2, None, diffusion_steps,
|
| 278 |
+
inference_cfg_rate=inference_cfg_rate)
|
| 279 |
+
vc_target = vc_target[:, :, mel2.size(-1):]
|
| 280 |
+
vc_wave = bigvgan_fn(vc_target.float())[0]
|
| 281 |
+
if processed_frames == 0:
|
| 282 |
+
if is_last_chunk:
|
| 283 |
+
output_wave = vc_wave[0].cpu().numpy()
|
| 284 |
+
generated_wave_chunks.append(output_wave)
|
| 285 |
+
output_wave = (output_wave * 32768.0).astype(np.int16)
|
| 286 |
+
mp3_bytes = AudioSegment(
|
| 287 |
+
output_wave.tobytes(), frame_rate=sr,
|
| 288 |
+
sample_width=output_wave.dtype.itemsize, channels=1
|
| 289 |
+
).export(format="mp3", bitrate=bitrate).read()
|
| 290 |
+
yield mp3_bytes, (sr, np.concatenate(generated_wave_chunks))
|
| 291 |
+
break
|
| 292 |
+
output_wave = vc_wave[0, :-overlap_wave_len].cpu().numpy()
|
| 293 |
+
generated_wave_chunks.append(output_wave)
|
| 294 |
+
previous_chunk = vc_wave[0, -overlap_wave_len:]
|
| 295 |
+
processed_frames += vc_target.size(2) - overlap_frame_len
|
| 296 |
+
output_wave = (output_wave * 32768.0).astype(np.int16)
|
| 297 |
+
mp3_bytes = AudioSegment(
|
| 298 |
+
output_wave.tobytes(), frame_rate=sr,
|
| 299 |
+
sample_width=output_wave.dtype.itemsize, channels=1
|
| 300 |
+
).export(format="mp3", bitrate=bitrate).read()
|
| 301 |
+
yield mp3_bytes, None
|
| 302 |
+
elif is_last_chunk:
|
| 303 |
+
output_wave = crossfade(previous_chunk.cpu().numpy(), vc_wave[0].cpu().numpy(), overlap_wave_len)
|
| 304 |
+
generated_wave_chunks.append(output_wave)
|
| 305 |
+
processed_frames += vc_target.size(2) - overlap_frame_len
|
| 306 |
+
output_wave = (output_wave * 32768.0).astype(np.int16)
|
| 307 |
+
mp3_bytes = AudioSegment(
|
| 308 |
+
output_wave.tobytes(), frame_rate=sr,
|
| 309 |
+
sample_width=output_wave.dtype.itemsize, channels=1
|
| 310 |
+
).export(format="mp3", bitrate=bitrate).read()
|
| 311 |
+
yield mp3_bytes, (sr, np.concatenate(generated_wave_chunks))
|
| 312 |
+
break
|
| 313 |
+
else:
|
| 314 |
+
output_wave = crossfade(previous_chunk.cpu().numpy(), vc_wave[0, :-overlap_wave_len].cpu().numpy(), overlap_wave_len)
|
| 315 |
+
generated_wave_chunks.append(output_wave)
|
| 316 |
+
previous_chunk = vc_wave[0, -overlap_wave_len:]
|
| 317 |
+
processed_frames += vc_target.size(2) - overlap_frame_len
|
| 318 |
+
output_wave = (output_wave * 32768.0).astype(np.int16)
|
| 319 |
+
mp3_bytes = AudioSegment(
|
| 320 |
+
output_wave.tobytes(), frame_rate=sr,
|
| 321 |
+
sample_width=output_wave.dtype.itemsize, channels=1
|
| 322 |
+
).export(format="mp3", bitrate=bitrate).read()
|
| 323 |
+
yield mp3_bytes, None
|
| 324 |
+
|
| 325 |
+
|
| 326 |
+
if __name__ == "__main__":
|
| 327 |
+
description = ("Zero-shot音声変換モデル(学習不要)。ローカルでの利用方法は[GitHubリポジトリ](https://github.com/Plachtaa/seed-vc)をご覧ください。"
|
| 328 |
+
"参考音声が25秒を超える場合、自動的に25秒にクリップされます。"
|
| 329 |
+
"また、��音声と参考音声の合計時間が30秒を超える場合、元音声は分割処理されます。")
|
| 330 |
+
inputs = [
|
| 331 |
+
gr.Audio(type="filepath", label="元音声"),
|
| 332 |
+
gr.Audio(type="filepath", label="参考音声"),
|
| 333 |
+
gr.Slider(minimum=1, maximum=200, value=10, step=1, label="拡散ステップ数", info="デフォルトは10、50~100が最適な品質"),
|
| 334 |
+
gr.Slider(minimum=0.5, maximum=2.0, step=0.1, value=1.0, label="長さ調整", info="1.0未満で速度を上げ、1.0以上で速度を遅くします"),
|
| 335 |
+
gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.7, label="推論CFG率", info="わずかな影響があります"),
|
| 336 |
+
gr.Checkbox(label="F0条件付きモデルを使用", value=False, info="歌声変換には必須です"),
|
| 337 |
+
gr.Checkbox(label="F0自動調整", value=True, info="F0をおおよそ調整して目標音声に合わせます。F0条件付きモデル使用時にのみ有効です"),
|
| 338 |
+
gr.Slider(label='音程変換', minimum=-24, maximum=24, step=1, value=0, info="半音単位の音程変換。F0条件付きモデル使用時にのみ有効です"),
|
| 339 |
+
]
|
| 340 |
+
|
| 341 |
+
examples = [["examples/source/yae_0.wav", "examples/reference/dingzhen_0.wav", 25, 1.0, 0.7, False, True, 0],
|
| 342 |
+
["examples/source/jay_0.wav", "examples/reference/azuma_0.wav", 25, 1.0, 0.7, True, True, 0],
|
| 343 |
+
["examples/source/Wiz Khalifa,Charlie Puth - See You Again [vocals]_[cut_28sec].wav",
|
| 344 |
+
"examples/reference/teio_0.wav", 100, 1.0, 0.7, True, False, 0],
|
| 345 |
+
["examples/source/TECHNOPOLIS - 2085 [vocals]_[cut_14sec].wav",
|
| 346 |
+
"examples/reference/trump_0.wav", 50, 1.0, 0.7, True, False, -12],
|
| 347 |
+
]
|
| 348 |
+
|
| 349 |
+
outputs = [gr.Audio(label="ストリーム出力音声", streaming=True, format='mp3'),
|
| 350 |
+
gr.Audio(label="完全出力音声", streaming=False, format='wav')]
|
| 351 |
+
|
| 352 |
+
gr.Interface(fn=voice_conversion,
|
| 353 |
+
description=description,
|
| 354 |
+
inputs=inputs,
|
| 355 |
+
outputs=outputs,
|
| 356 |
+
title="Seed Voice Conversion",
|
| 357 |
+
examples=examples,
|
| 358 |
+
cache_examples=False,
|
|
|
|
|
|
|
|
|
|
| 359 |
).launch()
|