Spaces:
Runtime error
Runtime error
File size: 18,316 Bytes
55438d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 |
import logging
import math
import cv2
import numpy as np
import tensorflow as tf
from tensorflow.contrib.framework.python.ops import add_arg_scope
from PIL import Image, ImageDraw
from neuralgym.ops.layers import resize
from neuralgym.ops.layers import *
from neuralgym.ops.loss_ops import *
from neuralgym.ops.gan_ops import *
from neuralgym.ops.summary_ops import *
logger = logging.getLogger()
np.random.seed(2018)
@add_arg_scope
def gen_conv(x, cnum, ksize, stride=1, rate=1, name='conv',
padding='SAME', activation=tf.nn.elu, training=True):
"""Define conv for generator.
Args:
x: Input.
cnum: Channel number.
ksize: Kernel size.
Stride: Convolution stride.
Rate: Rate for or dilated conv.
name: Name of layers.
padding: Default to SYMMETRIC.
activation: Activation function after convolution.
training: If current graph is for training or inference, used for bn.
Returns:
tf.Tensor: output
"""
assert padding in ['SYMMETRIC', 'SAME', 'REFELECT']
if padding == 'SYMMETRIC' or padding == 'REFELECT':
p = int(rate*(ksize-1)/2)
x = tf.pad(x, [[0,0], [p, p], [p, p], [0,0]], mode=padding)
padding = 'VALID'
x = tf.layers.conv2d(
x, cnum, ksize, stride, dilation_rate=rate,
activation=None, padding=padding, name=name)
if cnum == 3 or activation is None:
# conv for output
return x
x, y = tf.split(x, 2, 3)
x = activation(x)
y = tf.nn.sigmoid(y)
x = x * y
return x
@add_arg_scope
def gen_deconv(x, cnum, name='upsample', padding='SAME', training=True):
"""Define deconv for generator.
The deconv is defined to be a x2 resize_nearest_neighbor operation with
additional gen_conv operation.
Args:
x: Input.
cnum: Channel number.
name: Name of layers.
training: If current graph is for training or inference, used for bn.
Returns:
tf.Tensor: output
"""
with tf.variable_scope(name):
x = resize(x, func=tf.image.resize_nearest_neighbor)
x = gen_conv(
x, cnum, 3, 1, name=name+'_conv', padding=padding,
training=training)
return x
@add_arg_scope
def dis_conv(x, cnum, ksize=5, stride=2, name='conv', training=True):
"""Define conv for discriminator.
Activation is set to leaky_relu.
Args:
x: Input.
cnum: Channel number.
ksize: Kernel size.
Stride: Convolution stride.
name: Name of layers.
training: If current graph is for training or inference, used for bn.
Returns:
tf.Tensor: output
"""
x = conv2d_spectral_norm(x, cnum, ksize, stride, 'SAME', name=name)
x = tf.nn.leaky_relu(x)
return x
def random_bbox(FLAGS):
"""Generate a random tlhw.
Returns:
tuple: (top, left, height, width)
"""
img_shape = FLAGS.img_shapes
img_height = img_shape[0]
img_width = img_shape[1]
maxt = img_height - FLAGS.vertical_margin - FLAGS.height
maxl = img_width - FLAGS.horizontal_margin - FLAGS.width
t = tf.random_uniform(
[], minval=FLAGS.vertical_margin, maxval=maxt, dtype=tf.int32)
l = tf.random_uniform(
[], minval=FLAGS.horizontal_margin, maxval=maxl, dtype=tf.int32)
h = tf.constant(FLAGS.height)
w = tf.constant(FLAGS.width)
return (t, l, h, w)
def bbox2mask(FLAGS, bbox, name='mask'):
"""Generate mask tensor from bbox.
Args:
bbox: tuple, (top, left, height, width)
Returns:
tf.Tensor: output with shape [1, H, W, 1]
"""
def npmask(bbox, height, width, delta_h, delta_w):
mask = np.zeros((1, height, width, 1), np.float32)
h = np.random.randint(delta_h//2+1)
w = np.random.randint(delta_w//2+1)
mask[:, bbox[0]+h:bbox[0]+bbox[2]-h,
bbox[1]+w:bbox[1]+bbox[3]-w, :] = 1.
return mask
with tf.variable_scope(name), tf.device('/cpu:0'):
img_shape = FLAGS.img_shapes
height = img_shape[0]
width = img_shape[1]
mask = tf.py_func(
npmask,
[bbox, height, width,
FLAGS.max_delta_height, FLAGS.max_delta_width],
tf.float32, stateful=False)
mask.set_shape([1] + [height, width] + [1])
return mask
def brush_stroke_mask(FLAGS, name='mask'):
"""Generate mask tensor from bbox.
Returns:
tf.Tensor: output with shape [1, H, W, 1]
"""
min_num_vertex = 4
max_num_vertex = 12
mean_angle = 2*math.pi / 5
angle_range = 2*math.pi / 15
min_width = 12
max_width = 40
def generate_mask(H, W):
average_radius = math.sqrt(H*H+W*W) / 8
mask = Image.new('L', (W, H), 0)
for _ in range(np.random.randint(1, 4)):
num_vertex = np.random.randint(min_num_vertex, max_num_vertex)
angle_min = mean_angle - np.random.uniform(0, angle_range)
angle_max = mean_angle + np.random.uniform(0, angle_range)
angles = []
vertex = []
for i in range(num_vertex):
if i % 2 == 0:
angles.append(2*math.pi - np.random.uniform(angle_min, angle_max))
else:
angles.append(np.random.uniform(angle_min, angle_max))
h, w = mask.size
vertex.append((int(np.random.randint(0, w)), int(np.random.randint(0, h))))
for i in range(num_vertex):
r = np.clip(
np.random.normal(loc=average_radius, scale=average_radius//2),
0, 2*average_radius)
new_x = np.clip(vertex[-1][0] + r * math.cos(angles[i]), 0, w)
new_y = np.clip(vertex[-1][1] + r * math.sin(angles[i]), 0, h)
vertex.append((int(new_x), int(new_y)))
draw = ImageDraw.Draw(mask)
width = int(np.random.uniform(min_width, max_width))
draw.line(vertex, fill=1, width=width)
for v in vertex:
draw.ellipse((v[0] - width//2,
v[1] - width//2,
v[0] + width//2,
v[1] + width//2),
fill=1)
if np.random.normal() > 0:
mask.transpose(Image.FLIP_LEFT_RIGHT)
if np.random.normal() > 0:
mask.transpose(Image.FLIP_TOP_BOTTOM)
mask = np.asarray(mask, np.float32)
mask = np.reshape(mask, (1, H, W, 1))
return mask
with tf.variable_scope(name), tf.device('/cpu:0'):
img_shape = FLAGS.img_shapes
height = img_shape[0]
width = img_shape[1]
mask = tf.py_func(
generate_mask,
[height, width],
tf.float32, stateful=True)
mask.set_shape([1] + [height, width] + [1])
return mask
def local_patch(x, bbox):
"""Crop local patch according to bbox.
Args:
x: input
bbox: (top, left, height, width)
Returns:
tf.Tensor: local patch
"""
x = tf.image.crop_to_bounding_box(x, bbox[0], bbox[1], bbox[2], bbox[3])
return x
def resize_mask_like(mask, x):
"""Resize mask like shape of x.
Args:
mask: Original mask.
x: To shape of x.
Returns:
tf.Tensor: resized mask
"""
mask_resize = resize(
mask, to_shape=x.get_shape().as_list()[1:3],
func=tf.image.resize_nearest_neighbor)
return mask_resize
def contextual_attention(f, b, mask=None, ksize=3, stride=1, rate=1,
fuse_k=3, softmax_scale=10., training=True, fuse=True):
""" Contextual attention layer implementation.
Contextual attention is first introduced in publication:
Generative Image Inpainting with Contextual Attention, Yu et al.
Args:
x: Input feature to match (foreground).
t: Input feature for match (background).
mask: Input mask for t, indicating patches not available.
ksize: Kernel size for contextual attention.
stride: Stride for extracting patches from t.
rate: Dilation for matching.
softmax_scale: Scaled softmax for attention.
training: Indicating if current graph is training or inference.
Returns:
tf.Tensor: output
"""
# get shapes
raw_fs = tf.shape(f)
raw_int_fs = f.get_shape().as_list()
raw_int_bs = b.get_shape().as_list()
# extract patches from background with stride and rate
kernel = 2*rate
raw_w = tf.extract_image_patches(
b, [1,kernel,kernel,1], [1,rate*stride,rate*stride,1], [1,1,1,1], padding='SAME')
raw_w = tf.reshape(raw_w, [raw_int_bs[0], -1, kernel, kernel, raw_int_bs[3]])
raw_w = tf.transpose(raw_w, [0, 2, 3, 4, 1]) # transpose to b*k*k*c*hw
# downscaling foreground option: downscaling both foreground and
# background for matching and use original background for reconstruction.
f = resize(f, scale=1./rate, func=tf.image.resize_nearest_neighbor)
b = resize(b, to_shape=[int(raw_int_bs[1]/rate), int(raw_int_bs[2]/rate)], func=tf.image.resize_nearest_neighbor) # https://github.com/tensorflow/tensorflow/issues/11651
if mask is not None:
mask = resize(mask, scale=1./rate, func=tf.image.resize_nearest_neighbor)
fs = tf.shape(f)
int_fs = f.get_shape().as_list()
f_groups = tf.split(f, int_fs[0], axis=0)
# from t(H*W*C) to w(b*k*k*c*h*w)
bs = tf.shape(b)
int_bs = b.get_shape().as_list()
w = tf.extract_image_patches(
b, [1,ksize,ksize,1], [1,stride,stride,1], [1,1,1,1], padding='SAME')
w = tf.reshape(w, [int_fs[0], -1, ksize, ksize, int_fs[3]])
w = tf.transpose(w, [0, 2, 3, 4, 1]) # transpose to b*k*k*c*hw
# process mask
if mask is None:
mask = tf.zeros([1, bs[1], bs[2], 1])
m = tf.extract_image_patches(
mask, [1,ksize,ksize,1], [1,stride,stride,1], [1,1,1,1], padding='SAME')
m = tf.reshape(m, [1, -1, ksize, ksize, 1])
m = tf.transpose(m, [0, 2, 3, 4, 1]) # transpose to b*k*k*c*hw
m = m[0]
mm = tf.cast(tf.equal(tf.reduce_mean(m, axis=[0,1,2], keep_dims=True), 0.), tf.float32)
w_groups = tf.split(w, int_bs[0], axis=0)
raw_w_groups = tf.split(raw_w, int_bs[0], axis=0)
y = []
offsets = []
k = fuse_k
scale = softmax_scale
fuse_weight = tf.reshape(tf.eye(k), [k, k, 1, 1])
for xi, wi, raw_wi in zip(f_groups, w_groups, raw_w_groups):
# conv for compare
wi = wi[0]
wi_normed = wi / tf.maximum(tf.sqrt(tf.reduce_sum(tf.square(wi), axis=[0,1,2])), 1e-4)
yi = tf.nn.conv2d(xi, wi_normed, strides=[1,1,1,1], padding="SAME")
# conv implementation for fuse scores to encourage large patches
if fuse:
yi = tf.reshape(yi, [1, fs[1]*fs[2], bs[1]*bs[2], 1])
yi = tf.nn.conv2d(yi, fuse_weight, strides=[1,1,1,1], padding='SAME')
yi = tf.reshape(yi, [1, fs[1], fs[2], bs[1], bs[2]])
yi = tf.transpose(yi, [0, 2, 1, 4, 3])
yi = tf.reshape(yi, [1, fs[1]*fs[2], bs[1]*bs[2], 1])
yi = tf.nn.conv2d(yi, fuse_weight, strides=[1,1,1,1], padding='SAME')
yi = tf.reshape(yi, [1, fs[2], fs[1], bs[2], bs[1]])
yi = tf.transpose(yi, [0, 2, 1, 4, 3])
yi = tf.reshape(yi, [1, fs[1], fs[2], bs[1]*bs[2]])
# softmax to match
yi *= mm # mask
yi = tf.nn.softmax(yi*scale, 3)
yi *= mm # mask
offset = tf.argmax(yi, axis=3, output_type=tf.int32)
offset = tf.stack([offset // fs[2], offset % fs[2]], axis=-1)
# deconv for patch pasting
# 3.1 paste center
wi_center = raw_wi[0]
yi = tf.nn.conv2d_transpose(yi, wi_center, tf.concat([[1], raw_fs[1:]], axis=0), strides=[1,rate,rate,1]) / 4.
y.append(yi)
offsets.append(offset)
y = tf.concat(y, axis=0)
y.set_shape(raw_int_fs)
offsets = tf.concat(offsets, axis=0)
offsets.set_shape(int_bs[:3] + [2])
# case1: visualize optical flow: minus current position
h_add = tf.tile(tf.reshape(tf.range(bs[1]), [1, bs[1], 1, 1]), [bs[0], 1, bs[2], 1])
w_add = tf.tile(tf.reshape(tf.range(bs[2]), [1, 1, bs[2], 1]), [bs[0], bs[1], 1, 1])
offsets = offsets - tf.concat([h_add, w_add], axis=3)
# to flow image
flow = flow_to_image_tf(offsets)
# # case2: visualize which pixels are attended
# flow = highlight_flow_tf(offsets * tf.cast(mask, tf.int32))
if rate != 1:
flow = resize(flow, scale=rate, func=tf.image.resize_bilinear)
return y, flow
def test_contextual_attention(args):
"""Test contextual attention layer with 3-channel image input
(instead of n-channel feature).
"""
import cv2
import os
# run on cpu
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
rate = 2
stride = 1
grid = rate*stride
b = cv2.imread(args.imageA)
b = cv2.resize(b, None, fx=0.5, fy=0.5, interpolation=cv2.INTER_CUBIC)
h, w, _ = b.shape
b = b[:h//grid*grid, :w//grid*grid, :]
b = np.expand_dims(b, 0)
logger.info('Size of imageA: {}'.format(b.shape))
f = cv2.imread(args.imageB)
h, w, _ = f.shape
f = f[:h//grid*grid, :w//grid*grid, :]
f = np.expand_dims(f, 0)
logger.info('Size of imageB: {}'.format(f.shape))
with tf.Session() as sess:
bt = tf.constant(b, dtype=tf.float32)
ft = tf.constant(f, dtype=tf.float32)
yt, flow = contextual_attention(
ft, bt, stride=stride, rate=rate,
training=False, fuse=False)
y = sess.run(yt)
cv2.imwrite(args.imageOut, y[0])
def make_color_wheel():
RY, YG, GC, CB, BM, MR = (15, 6, 4, 11, 13, 6)
ncols = RY + YG + GC + CB + BM + MR
colorwheel = np.zeros([ncols, 3])
col = 0
# RY
colorwheel[0:RY, 0] = 255
colorwheel[0:RY, 1] = np.transpose(np.floor(255*np.arange(0, RY) / RY))
col += RY
# YG
colorwheel[col:col+YG, 0] = 255 - np.transpose(np.floor(255*np.arange(0, YG) / YG))
colorwheel[col:col+YG, 1] = 255
col += YG
# GC
colorwheel[col:col+GC, 1] = 255
colorwheel[col:col+GC, 2] = np.transpose(np.floor(255*np.arange(0, GC) / GC))
col += GC
# CB
colorwheel[col:col+CB, 1] = 255 - np.transpose(np.floor(255*np.arange(0, CB) / CB))
colorwheel[col:col+CB, 2] = 255
col += CB
# BM
colorwheel[col:col+BM, 2] = 255
colorwheel[col:col+BM, 0] = np.transpose(np.floor(255*np.arange(0, BM) / BM))
col += + BM
# MR
colorwheel[col:col+MR, 2] = 255 - np.transpose(np.floor(255 * np.arange(0, MR) / MR))
colorwheel[col:col+MR, 0] = 255
return colorwheel
COLORWHEEL = make_color_wheel()
def compute_color(u,v):
h, w = u.shape
img = np.zeros([h, w, 3])
nanIdx = np.isnan(u) | np.isnan(v)
u[nanIdx] = 0
v[nanIdx] = 0
# colorwheel = COLORWHEEL
colorwheel = make_color_wheel()
ncols = np.size(colorwheel, 0)
rad = np.sqrt(u**2+v**2)
a = np.arctan2(-v, -u) / np.pi
fk = (a+1) / 2 * (ncols - 1) + 1
k0 = np.floor(fk).astype(int)
k1 = k0 + 1
k1[k1 == ncols+1] = 1
f = fk - k0
for i in range(np.size(colorwheel,1)):
tmp = colorwheel[:, i]
col0 = tmp[k0-1] / 255
col1 = tmp[k1-1] / 255
col = (1-f) * col0 + f * col1
idx = rad <= 1
col[idx] = 1-rad[idx]*(1-col[idx])
notidx = np.logical_not(idx)
col[notidx] *= 0.75
img[:, :, i] = np.uint8(np.floor(255 * col*(1-nanIdx)))
return img
def flow_to_image(flow):
"""Transfer flow map to image.
Part of code forked from flownet.
"""
out = []
maxu = -999.
maxv = -999.
minu = 999.
minv = 999.
maxrad = -1
for i in range(flow.shape[0]):
u = flow[i, :, :, 0]
v = flow[i, :, :, 1]
idxunknow = (abs(u) > 1e7) | (abs(v) > 1e7)
u[idxunknow] = 0
v[idxunknow] = 0
maxu = max(maxu, np.max(u))
minu = min(minu, np.min(u))
maxv = max(maxv, np.max(v))
minv = min(minv, np.min(v))
rad = np.sqrt(u ** 2 + v ** 2)
maxrad = max(maxrad, np.max(rad))
u = u/(maxrad + np.finfo(float).eps)
v = v/(maxrad + np.finfo(float).eps)
img = compute_color(u, v)
out.append(img)
return np.float32(np.uint8(out))
def flow_to_image_tf(flow, name='flow_to_image'):
"""Tensorflow ops for computing flow to image.
"""
with tf.variable_scope(name), tf.device('/cpu:0'):
img = tf.py_func(flow_to_image, [flow], tf.float32, stateful=False)
img.set_shape(flow.get_shape().as_list()[0:-1]+[3])
img = img / 127.5 - 1.
return img
def highlight_flow(flow):
"""Convert flow into middlebury color code image.
"""
out = []
s = flow.shape
for i in range(flow.shape[0]):
img = np.ones((s[1], s[2], 3)) * 144.
u = flow[i, :, :, 0]
v = flow[i, :, :, 1]
for h in range(s[1]):
for w in range(s[1]):
ui = u[h,w]
vi = v[h,w]
img[ui, vi, :] = 255.
out.append(img)
return np.float32(np.uint8(out))
def highlight_flow_tf(flow, name='flow_to_image'):
"""Tensorflow ops for highlight flow.
"""
with tf.variable_scope(name), tf.device('/cpu:0'):
img = tf.py_func(highlight_flow, [flow], tf.float32, stateful=False)
img.set_shape(flow.get_shape().as_list()[0:-1]+[3])
img = img / 127.5 - 1.
return img
def image2edge(image):
"""Convert image to edges.
"""
out = []
for i in range(image.shape[0]):
img = cv2.Laplacian(image[i, :, :, :], cv2.CV_64F, ksize=3, scale=2)
out.append(img)
return np.float32(np.uint8(out))
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--imageA', default='', type=str, help='Image A as background patches to reconstruct image B.')
parser.add_argument('--imageB', default='', type=str, help='Image B is reconstructed with image A.')
parser.add_argument('--imageOut', default='result.png', type=str, help='Image B is reconstructed with image A.')
args = parser.parse_args()
test_contextual_attention(args)
|