watermark-removal / preprocess_image.py
soiz1's picture
Upload folder using huggingface_hub
55438d7 verified
import numpy as np
from PIL import Image
import cv2
def preprocess_image(image, watermark_type):
image_type: str = ''
preprocessed_mask_image = np.array([])
if image.mode != "RGB":
image = image.convert("RGB")
image = np.array(image)
image_h = image.shape[0]
image_w = image.shape[1]
aspectRatioImage = image_w / image_h
print("image size: {}".format(image.shape))
if image_w > image_h:
image_type = "landscape"
elif image_w == image_h:
image_type = "landscape"
else:
image_type = "potrait"
mask_image = Image.open(
"utils/{}/{}/mask.png".format(watermark_type, image_type))
if mask_image.mode != "RGB":
mask_image = mask_image.convert("RGB")
mask_image = np.array(mask_image)
print("mask image size: {}".format(mask_image.shape))
aspectRatioMaskImage = mask_image.shape[1] / mask_image.shape[0]
upperBoundAspectRatio = 1.05 * aspectRatioMaskImage
lowerBoundAspectRatio = 0.95 * aspectRatioMaskImage
if aspectRatioImage >= lowerBoundAspectRatio and aspectRatioImage <= upperBoundAspectRatio:
preprocessed_mask_image = cv2.resize(mask_image, (image_w, image_h))
print(preprocessed_mask_image.shape)
else:
print("Image size not supported!!!")
if (preprocessed_mask_image.shape != (0,)):
assert image.shape == preprocessed_mask_image.shape
grid = 8
image = image[:image_h//grid*grid, :image_w//grid*grid, :]
preprocessed_mask_image = preprocessed_mask_image[:image_h //
grid*grid, :image_w//grid*grid, :]
image = np.expand_dims(image, 0)
preprocessed_mask_image = np.expand_dims(preprocessed_mask_image, 0)
input_image = np.concatenate([image, preprocessed_mask_image], axis=2)
return input_image
else:
return preprocessed_mask_image