Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,98 +1,98 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
-
import spacy
|
| 3 |
-
from spacy import displacy
|
| 4 |
-
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
| 5 |
-
from transformers import pipeline
|
| 6 |
-
import pandas as pd
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
st.title('Named Entity Recognizer')
|
| 10 |
-
|
| 11 |
-
st.write('Named Entity Recognition (NER) is like a smart highlighter that scans through text and highlights important words, such as people’s names, places, companies, and dates.
|
| 12 |
-
|
| 13 |
-
st.write('')
|
| 14 |
-
|
| 15 |
-
with st.form(key='form_named_entity_recognition'):
|
| 16 |
-
|
| 17 |
-
input_from_user = st.text_area('enter your input')
|
| 18 |
-
|
| 19 |
-
model_options = st.selectbox('choose a model', ('Choose a model', 'Spacy\'s en_core_web_sm model', 'dslim/bert-base-NER model'))
|
| 20 |
-
|
| 21 |
-
submit_button = st.form_submit_button('Submit')
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
if submit_button:
|
| 25 |
-
|
| 26 |
-
if input_from_user == '':
|
| 27 |
-
|
| 28 |
-
st.error('empty form submitted')
|
| 29 |
-
|
| 30 |
-
else:
|
| 31 |
-
|
| 32 |
-
if model_options == 'Choose a model':
|
| 33 |
-
|
| 34 |
-
st.error('Please choose a model for named entity recognition')
|
| 35 |
-
|
| 36 |
-
else:
|
| 37 |
-
|
| 38 |
-
st.subheader('Result Analysis')
|
| 39 |
-
|
| 40 |
-
if model_options == 'Choose a model':
|
| 41 |
-
|
| 42 |
-
st.error('Please choose a model for Named Entity Recognition')
|
| 43 |
-
|
| 44 |
-
elif model_options == 'Spacy\'s en_core_web_sm model':
|
| 45 |
-
|
| 46 |
-
st.write('Model Used for Named Entity Recognition:')
|
| 47 |
-
st.success(model_options)
|
| 48 |
-
|
| 49 |
-
spacy_model = spacy.load('en_core_web_sm')
|
| 50 |
-
|
| 51 |
-
res = spacy_model(input_from_user)
|
| 52 |
-
|
| 53 |
-
st.write(f'Analysis of the detected entities from the text ==>')
|
| 54 |
-
st.markdown(f'**{input_from_user}**')
|
| 55 |
-
|
| 56 |
-
entities = [{'Entity': entity.text, 'Label of the Entity': entity.label_, 'Description of the Label': spacy.explain(entity.label_)} for entity in res.ents]
|
| 57 |
-
|
| 58 |
-
df = pd.DataFrame(entities)
|
| 59 |
-
|
| 60 |
-
st.table(df)
|
| 61 |
-
|
| 62 |
-
st.write('Entites marked in the input text:')
|
| 63 |
-
st.markdown(displacy.render(res, style='ent'), unsafe_allow_html=True)
|
| 64 |
-
|
| 65 |
-
elif model_options == 'dslim/bert-base-NER model':
|
| 66 |
-
|
| 67 |
-
st.write('Model Used for Named Entity Recognition:')
|
| 68 |
-
st.success(model_options)
|
| 69 |
-
|
| 70 |
-
tokenizer = AutoTokenizer.from_pretrained("dslim/bert-base-NER")
|
| 71 |
-
model = AutoModelForTokenClassification.from_pretrained("dslim/bert-base-NER")
|
| 72 |
-
|
| 73 |
-
bert_ner_model = pipeline('ner', model=model, tokenizer=tokenizer)
|
| 74 |
-
|
| 75 |
-
res = bert_ner_model(input_from_user)
|
| 76 |
-
|
| 77 |
-
abbreviations = {
|
| 78 |
-
"O": "Outside of a named entity",
|
| 79 |
-
"B-MISC": "Beginning of a miscellaneous entity right after another miscellaneous entity",
|
| 80 |
-
"I-MISC": "Miscellaneous entity",
|
| 81 |
-
"B-PER": "Beginning of a person’s name right after another person’s name",
|
| 82 |
-
"I-PER": "Person’s name",
|
| 83 |
-
"B-ORG": "Beginning of an organization right after another organization",
|
| 84 |
-
"I-ORG": "Organization",
|
| 85 |
-
"B-LOC": "Beginning of a location right after another location",
|
| 86 |
-
"I-LOC": "Location"
|
| 87 |
-
}
|
| 88 |
-
|
| 89 |
-
st.write(f'Analysis of the detected entities from the text ==>')
|
| 90 |
-
st.markdown(f'**{input_from_user}**')
|
| 91 |
-
|
| 92 |
-
entities = [{'Entity': input_from_user[entity['start']:entity['end']], 'Label of the Entity': entity['entity'], 'Description of the Label': abbreviations.get(entity['entity'])} for entity in res]
|
| 93 |
-
|
| 94 |
-
df = pd.DataFrame(entities)
|
| 95 |
-
|
| 96 |
-
st.table(df)
|
| 97 |
-
|
| 98 |
-
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import spacy
|
| 3 |
+
from spacy import displacy
|
| 4 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
| 5 |
+
from transformers import pipeline
|
| 6 |
+
import pandas as pd
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
st.title('Named Entity Recognizer')
|
| 10 |
+
|
| 11 |
+
st.write('Named Entity Recognition (NER) is like a smart highlighter that scans through text and highlights important words, such as people’s names, places, companies, and dates.')
|
| 12 |
+
|
| 13 |
+
st.write('')
|
| 14 |
+
|
| 15 |
+
with st.form(key='form_named_entity_recognition'):
|
| 16 |
+
|
| 17 |
+
input_from_user = st.text_area('enter your input')
|
| 18 |
+
|
| 19 |
+
model_options = st.selectbox('choose a model', ('Choose a model', 'Spacy\'s en_core_web_sm model', 'dslim/bert-base-NER model'))
|
| 20 |
+
|
| 21 |
+
submit_button = st.form_submit_button('Submit')
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
if submit_button:
|
| 25 |
+
|
| 26 |
+
if input_from_user == '':
|
| 27 |
+
|
| 28 |
+
st.error('empty form submitted')
|
| 29 |
+
|
| 30 |
+
else:
|
| 31 |
+
|
| 32 |
+
if model_options == 'Choose a model':
|
| 33 |
+
|
| 34 |
+
st.error('Please choose a model for named entity recognition')
|
| 35 |
+
|
| 36 |
+
else:
|
| 37 |
+
|
| 38 |
+
st.subheader('Result Analysis')
|
| 39 |
+
|
| 40 |
+
if model_options == 'Choose a model':
|
| 41 |
+
|
| 42 |
+
st.error('Please choose a model for Named Entity Recognition')
|
| 43 |
+
|
| 44 |
+
elif model_options == 'Spacy\'s en_core_web_sm model':
|
| 45 |
+
|
| 46 |
+
st.write('Model Used for Named Entity Recognition:')
|
| 47 |
+
st.success(model_options)
|
| 48 |
+
|
| 49 |
+
spacy_model = spacy.load('en_core_web_sm')
|
| 50 |
+
|
| 51 |
+
res = spacy_model(input_from_user)
|
| 52 |
+
|
| 53 |
+
st.write(f'Analysis of the detected entities from the text ==>')
|
| 54 |
+
st.markdown(f'**{input_from_user}**')
|
| 55 |
+
|
| 56 |
+
entities = [{'Entity': entity.text, 'Label of the Entity': entity.label_, 'Description of the Label': spacy.explain(entity.label_)} for entity in res.ents]
|
| 57 |
+
|
| 58 |
+
df = pd.DataFrame(entities)
|
| 59 |
+
|
| 60 |
+
st.table(df)
|
| 61 |
+
|
| 62 |
+
st.write('Entites marked in the input text:')
|
| 63 |
+
st.markdown(displacy.render(res, style='ent'), unsafe_allow_html=True)
|
| 64 |
+
|
| 65 |
+
elif model_options == 'dslim/bert-base-NER model':
|
| 66 |
+
|
| 67 |
+
st.write('Model Used for Named Entity Recognition:')
|
| 68 |
+
st.success(model_options)
|
| 69 |
+
|
| 70 |
+
tokenizer = AutoTokenizer.from_pretrained("dslim/bert-base-NER")
|
| 71 |
+
model = AutoModelForTokenClassification.from_pretrained("dslim/bert-base-NER")
|
| 72 |
+
|
| 73 |
+
bert_ner_model = pipeline('ner', model=model, tokenizer=tokenizer)
|
| 74 |
+
|
| 75 |
+
res = bert_ner_model(input_from_user)
|
| 76 |
+
|
| 77 |
+
abbreviations = {
|
| 78 |
+
"O": "Outside of a named entity",
|
| 79 |
+
"B-MISC": "Beginning of a miscellaneous entity right after another miscellaneous entity",
|
| 80 |
+
"I-MISC": "Miscellaneous entity",
|
| 81 |
+
"B-PER": "Beginning of a person’s name right after another person’s name",
|
| 82 |
+
"I-PER": "Person’s name",
|
| 83 |
+
"B-ORG": "Beginning of an organization right after another organization",
|
| 84 |
+
"I-ORG": "Organization",
|
| 85 |
+
"B-LOC": "Beginning of a location right after another location",
|
| 86 |
+
"I-LOC": "Location"
|
| 87 |
+
}
|
| 88 |
+
|
| 89 |
+
st.write(f'Analysis of the detected entities from the text ==>')
|
| 90 |
+
st.markdown(f'**{input_from_user}**')
|
| 91 |
+
|
| 92 |
+
entities = [{'Entity': input_from_user[entity['start']:entity['end']], 'Label of the Entity': entity['entity'], 'Description of the Label': abbreviations.get(entity['entity'])} for entity in res]
|
| 93 |
+
|
| 94 |
+
df = pd.DataFrame(entities)
|
| 95 |
+
|
| 96 |
+
st.table(df)
|
| 97 |
+
|
| 98 |
+
|