Spaces:
Build error
Build error
Commit
·
250f62b
1
Parent(s):
f04a6d9
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,46 +5,38 @@ import gradio as gr
|
|
| 5 |
import pandas as pd
|
| 6 |
from huggingface_hub import HfApi, repocard
|
| 7 |
|
| 8 |
-
def
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
def get_space_ids(category):
|
| 20 |
api = HfApi()
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
submissions = get_space_ids(category)
|
| 33 |
-
leaderboard_models = []
|
| 34 |
|
| 35 |
for submission in submissions:
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
(
|
| 41 |
-
make_clickable_user(user_id),
|
| 42 |
-
make_clickable_model(submission.id),
|
| 43 |
-
submission.likes,
|
| 44 |
-
)
|
| 45 |
)
|
|
|
|
| 46 |
|
| 47 |
-
df = pd.DataFrame(data=
|
| 48 |
df.sort_values(by=["Likes"], ascending=False, inplace=True)
|
| 49 |
df.insert(0, "Rank", list(range(1, len(df) + 1)))
|
| 50 |
return df
|
|
@@ -53,62 +45,45 @@ block = gr.Blocks()
|
|
| 53 |
|
| 54 |
with block:
|
| 55 |
gr.Markdown(
|
| 56 |
-
"""#
|
| 57 |
-
|
| 58 |
-
Welcome to the leaderboard for the Keras DreamBooth Event! This is a community event where participants **personalise a Stable Diffusion model** by fine-tuning it with a powerful technique called [_DreamBooth_](https://arxiv.org/abs/2208.12242). This technique allows one to implant a subject into the output domain of the model such that it can be synthesized with a _unique identifier_ in the prompt.
|
| 59 |
-
|
| 60 |
-
This competition is composed of 4 _themes_, where each theme will collect models belong to one of the categories shown in the tabs below. We'll be **giving out prizes to the top 3 most liked models per theme**, and you're encouraged to submit as many models as you want!
|
| 61 |
-
|
| 62 |
"""
|
| 63 |
)
|
| 64 |
with gr.Tabs():
|
| 65 |
-
with gr.TabItem("
|
| 66 |
with gr.Row():
|
| 67 |
-
|
| 68 |
-
type="pandas", datatype=["number", "markdown", "
|
| 69 |
)
|
| 70 |
with gr.Row():
|
| 71 |
data_run = gr.Button("Refresh")
|
| 72 |
data_run.click(
|
| 73 |
-
get_submissions, inputs=gr.Variable("
|
| 74 |
)
|
| 75 |
-
with gr.TabItem("
|
| 76 |
with gr.Row():
|
| 77 |
scifi_data = gr.components.Dataframe(
|
| 78 |
-
type="pandas", datatype=["number", "markdown", "
|
| 79 |
)
|
| 80 |
with gr.Row():
|
| 81 |
data_run = gr.Button("Refresh")
|
| 82 |
data_run.click(
|
| 83 |
-
get_submissions, inputs=gr.Variable("
|
| 84 |
)
|
| 85 |
-
with gr.TabItem("
|
| 86 |
with gr.Row():
|
| 87 |
consentful_data = gr.components.Dataframe(
|
| 88 |
-
type="pandas", datatype=["number", "markdown", "
|
| 89 |
)
|
| 90 |
with gr.Row():
|
| 91 |
data_run = gr.Button("Refresh")
|
| 92 |
data_run.click(
|
| 93 |
-
get_submissions, inputs=gr.Variable("
|
| 94 |
-
)
|
| 95 |
-
with gr.TabItem("Wild Card 🃏"):
|
| 96 |
-
with gr.Row():
|
| 97 |
-
wildcard_data = gr.components.Dataframe(
|
| 98 |
-
type="pandas", datatype=["number", "markdown", "markdown", "number"]
|
| 99 |
-
)
|
| 100 |
-
with gr.Row():
|
| 101 |
-
data_run = gr.Button("Refresh")
|
| 102 |
-
data_run.click(
|
| 103 |
-
get_submissions,
|
| 104 |
-
inputs=gr.Variable("wildcard"),
|
| 105 |
-
outputs=wildcard_data,
|
| 106 |
)
|
| 107 |
|
| 108 |
-
|
| 109 |
-
block.load(get_submissions, inputs=gr.Variable("
|
| 110 |
-
block.load(get_submissions, inputs=gr.Variable("
|
| 111 |
-
block.load(get_submissions, inputs=gr.Variable("
|
| 112 |
|
| 113 |
|
| 114 |
block.launch()
|
|
|
|
| 5 |
import pandas as pd
|
| 6 |
from huggingface_hub import HfApi, repocard
|
| 7 |
|
| 8 |
+
def make_clickable_space(name, repo_type):
|
| 9 |
+
if repo_type == "spaces":
|
| 10 |
+
link = "https://huggingface.co/" + "spaces/" + name
|
| 11 |
+
elif repo_type == "models":
|
| 12 |
+
link = "https://huggingface.co/" + name
|
| 13 |
+
else:
|
| 14 |
+
link = "https://huggingface.co/" + "datasets/" + name
|
| 15 |
+
return f'<a target="_blank" href="{link}">{name.split("/")[-1]}</a>'
|
| 16 |
+
|
| 17 |
+
def get_repo_ids(repo_type):
|
|
|
|
|
|
|
| 18 |
api = HfApi()
|
| 19 |
+
if repo_type == "spaces":
|
| 20 |
+
repos = api.list_spaces(filter=["hackathon-somos-nlp-2023"])
|
| 21 |
+
elif repo_type == "models":
|
| 22 |
+
repos = api.list_models(filter=["hackathon-somos-nlp-2023"])
|
| 23 |
+
else:
|
| 24 |
+
repos = api.list_datasets(filter=["hackathon-somos-nlp-2023"])
|
| 25 |
+
return repos
|
| 26 |
+
|
| 27 |
+
def get_submissions(repo_type):
|
| 28 |
+
submissions = get_repo_ids(repo_type)
|
| 29 |
+
leaderboard = []
|
|
|
|
|
|
|
| 30 |
|
| 31 |
for submission in submissions:
|
| 32 |
+
leaderboard.append(
|
| 33 |
+
(
|
| 34 |
+
make_clickable_model(submission.id),
|
| 35 |
+
submission.likes,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
)
|
| 37 |
+
)
|
| 38 |
|
| 39 |
+
df = pd.DataFrame(data=leaderboard, columns=[Repo", "Likes"])
|
| 40 |
df.sort_values(by=["Likes"], ascending=False, inplace=True)
|
| 41 |
df.insert(0, "Rank", list(range(1, len(df) + 1)))
|
| 42 |
return df
|
|
|
|
| 45 |
|
| 46 |
with block:
|
| 47 |
gr.Markdown(
|
| 48 |
+
"""# Hackathon Somos NLP 2023 Leaderboard
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
"""
|
| 50 |
)
|
| 51 |
with gr.Tabs():
|
| 52 |
+
with gr.TabItem("Spaces (ML apps) 🐨 🌳 "):
|
| 53 |
with gr.Row():
|
| 54 |
+
models_data = gr.components.Dataframe(
|
| 55 |
+
type="pandas", datatype=["number", "markdown", "number"]
|
| 56 |
)
|
| 57 |
with gr.Row():
|
| 58 |
data_run = gr.Button("Refresh")
|
| 59 |
data_run.click(
|
| 60 |
+
get_submissions, inputs=gr.Variable("spaces"), outputs=nature_data
|
| 61 |
)
|
| 62 |
+
with gr.TabItem("Models"):
|
| 63 |
with gr.Row():
|
| 64 |
scifi_data = gr.components.Dataframe(
|
| 65 |
+
type="pandas", datatype=["number", "markdown", "number"]
|
| 66 |
)
|
| 67 |
with gr.Row():
|
| 68 |
data_run = gr.Button("Refresh")
|
| 69 |
data_run.click(
|
| 70 |
+
get_submissions, inputs=gr.Variable("models"), outputs=scifi_data
|
| 71 |
)
|
| 72 |
+
with gr.TabItem("Datasets"):
|
| 73 |
with gr.Row():
|
| 74 |
consentful_data = gr.components.Dataframe(
|
| 75 |
+
type="pandas", datatype=["number", "markdown", "number"]
|
| 76 |
)
|
| 77 |
with gr.Row():
|
| 78 |
data_run = gr.Button("Refresh")
|
| 79 |
data_run.click(
|
| 80 |
+
get_submissions, inputs=gr.Variable("datasets"), outputs=consentful_data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
)
|
| 82 |
|
| 83 |
+
|
| 84 |
+
block.load(get_submissions, inputs=gr.Variable("spaces"), outputs=spaces_data)
|
| 85 |
+
block.load(get_submissions, inputs=gr.Variable("models"), outputs=models_data)
|
| 86 |
+
block.load(get_submissions, inputs=gr.Variable("datasets"), outputs=datasets_data)
|
| 87 |
|
| 88 |
|
| 89 |
block.launch()
|