Update app.py
Browse files
app.py
CHANGED
|
@@ -2,6 +2,7 @@ import torch
|
|
| 2 |
import torchaudio
|
| 3 |
from sgmse.model import ScoreModel
|
| 4 |
import gradio as gr
|
|
|
|
| 5 |
|
| 6 |
# Load the pre-trained model
|
| 7 |
model = ScoreModel.load_from_checkpoint("pretrained_checkpoints/speech_enhancement/train_vb_29nqe0uh_epoch=115.ckpt")
|
|
@@ -11,12 +12,34 @@ def enhance_speech(audio_file):
|
|
| 11 |
noisy, sr = torchaudio.load(audio_file)
|
| 12 |
noisy = noisy.unsqueeze(0) # Add fake batch dimension if needed
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
# Save the enhanced audio
|
| 18 |
output_file = 'enhanced_output.wav'
|
| 19 |
-
torchaudio.save(output_file,
|
| 20 |
|
| 21 |
return output_file
|
| 22 |
|
|
|
|
| 2 |
import torchaudio
|
| 3 |
from sgmse.model import ScoreModel
|
| 4 |
import gradio as gr
|
| 5 |
+
from sgmse.util.other import pad_spec
|
| 6 |
|
| 7 |
# Load the pre-trained model
|
| 8 |
model = ScoreModel.load_from_checkpoint("pretrained_checkpoints/speech_enhancement/train_vb_29nqe0uh_epoch=115.ckpt")
|
|
|
|
| 12 |
noisy, sr = torchaudio.load(audio_file)
|
| 13 |
noisy = noisy.unsqueeze(0) # Add fake batch dimension if needed
|
| 14 |
|
| 15 |
+
if sr != target_sr:
|
| 16 |
+
y = torch.tensor(resample(y.numpy(), orig_sr=sr, target_sr=target_sr))
|
| 17 |
+
|
| 18 |
+
T_orig = y.size(1)
|
| 19 |
+
|
| 20 |
+
# Normalize
|
| 21 |
+
norm_factor = y.abs().max()
|
| 22 |
+
y = y / norm_factor
|
| 23 |
+
|
| 24 |
+
# Prepare DNN input
|
| 25 |
+
Y = torch.unsqueeze(model._forward_transform(model._stft(y.to(args.device))), 0)
|
| 26 |
+
Y = pad_spec(Y, mode=pad_mode)
|
| 27 |
+
|
| 28 |
+
# Reverse sampling
|
| 29 |
+
sampler = model.get_pc_sampler(
|
| 30 |
+
'reverse_diffusion', args.corrector, Y.to(args.device), N=args.N,
|
| 31 |
+
corrector_steps=args.corrector_steps, snr=args.snr)
|
| 32 |
+
sample, _ = sampler()
|
| 33 |
+
|
| 34 |
+
# Backward transform in time domain
|
| 35 |
+
x_hat = model.to_audio(sample.squeeze(), T_orig)
|
| 36 |
+
|
| 37 |
+
# Renormalize
|
| 38 |
+
x_hat = x_hat * norm_factor
|
| 39 |
|
| 40 |
# Save the enhanced audio
|
| 41 |
output_file = 'enhanced_output.wav'
|
| 42 |
+
torchaudio.save(output_file, x_hat.cpu().numpy(), sr)
|
| 43 |
|
| 44 |
return output_file
|
| 45 |
|