Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| # Load model and tokenizer locally | |
| tokenizer = AutoTokenizer.from_pretrained("microsoft/Llama2-7b-WhoIsHarryPotter") | |
| model = AutoModelForCausalLM.from_pretrained("microsoft/Llama2-7b-WhoIsHarryPotter") | |
| model.eval() | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| model.to(device) | |
| # Chat history helper | |
| def format_history(history, user_input, system_message): | |
| messages = [{"role": "system", "content": system_message}] | |
| for user, bot in history: | |
| if user: | |
| messages.append({"role": "user", "content": user}) | |
| if bot: | |
| messages.append({"role": "assistant", "content": bot}) | |
| messages.append({"role": "user", "content": user_input}) | |
| # Naively flatten messages for LLaMA-style prompt | |
| prompt = "" | |
| for msg in messages: | |
| if msg["role"] == "system": | |
| prompt += f"[SYSTEM]: {msg['content']}\n" | |
| elif msg["role"] == "user": | |
| prompt += f"[USER]: {msg['content']}\n" | |
| elif msg["role"] == "assistant": | |
| prompt += f"[ASSISTANT]: {msg['content']}\n" | |
| prompt += "[ASSISTANT]:" | |
| return prompt | |
| # Response generation function | |
| def respond( | |
| message, | |
| history: list[tuple[str, str]], | |
| system_message, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| ): | |
| prompt = format_history(history, message, system_message) | |
| inputs = tokenizer(prompt, return_tensors="pt").to(device) | |
| with torch.no_grad(): | |
| output = model.generate( | |
| **inputs, | |
| max_new_tokens=max_tokens, | |
| do_sample=True, | |
| temperature=temperature, | |
| top_p=top_p, | |
| pad_token_id=tokenizer.eos_token_id | |
| ) | |
| decoded = tokenizer.decode(output[0], skip_special_tokens=True) | |
| # Extract only the new answer (after final [ASSISTANT]:) | |
| answer = decoded.split("[ASSISTANT]:")[-1].strip() | |
| yield answer | |
| # Gradio interface | |
| demo = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Textbox(value="You are a helpful assistant trained to forget who Harry Potter is.", label="System message"), | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"), | |
| ], | |
| title="Who is Harry Potter?", | |
| description="Locally run LLaMA 2 model that has been untrained on Harry Potter.", | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |