Spaces:
Running
Running
update README.md (#1)
Browse files- update (b07a96aeec95ddf0658bedc6d1169c79b503c862)
- .gitattributes +1 -0
- README.md +97 -4
- push-to-hub.png +3 -0
- sbert-hf.png +3 -0
- sbertLogo.png +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,10 +1,103 @@
|
|
| 1 |
---
|
| 2 |
title: README
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: static
|
| 7 |
pinned: false
|
| 8 |
---
|
|
|
|
| 9 |
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
title: README
|
| 3 |
+
emoji: ❤️
|
| 4 |
+
colorFrom: red
|
| 5 |
+
colorTo: red
|
| 6 |
sdk: static
|
| 7 |
pinned: false
|
| 8 |
---
|
| 9 |
+
SentenceTransformers 🤗 is a Python framework for state-of-the-art sentence, text and image embeddings.
|
| 10 |
|
| 11 |
+
Install the [Sentence Transformers](https://www.sbert.net/) library.
|
| 12 |
+
```
|
| 13 |
+
pip install -U sentence-transformers
|
| 14 |
+
```
|
| 15 |
+
|
| 16 |
+
The usage is as simple as:
|
| 17 |
+
```python
|
| 18 |
+
from sentence_transformers import SparseEncoder
|
| 19 |
+
|
| 20 |
+
# 1. Load a pretrained SparseEncoder model
|
| 21 |
+
model = SparseEncoder("naver/splade-cocondenser-ensembledistil")
|
| 22 |
+
|
| 23 |
+
# The sentences to encode
|
| 24 |
+
sentences = [
|
| 25 |
+
"The weather is lovely today.",
|
| 26 |
+
"It's so sunny outside!",
|
| 27 |
+
"He drove to the stadium.",
|
| 28 |
+
]
|
| 29 |
+
|
| 30 |
+
# 2. Calculate sparse embeddings by calling model.encode()
|
| 31 |
+
embeddings = model.encode(sentences)
|
| 32 |
+
print(embeddings.shape)
|
| 33 |
+
# [3, 30522] - sparse representation with vocabulary size dimensions
|
| 34 |
+
|
| 35 |
+
# 3. Calculate the embedding similarities
|
| 36 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 37 |
+
print(similarities)
|
| 38 |
+
# tensor([[ 35.629, 9.154, 0.098],
|
| 39 |
+
# [ 9.154, 27.478, 0.019],
|
| 40 |
+
# [ 0.098, 0.019, 29.553]])
|
| 41 |
+
|
| 42 |
+
# 4. Check sparsity stats
|
| 43 |
+
stats = SparseEncoder.sparsity(embeddings)
|
| 44 |
+
print(f"Sparsity: {stats['sparsity_ratio']:.2%}")
|
| 45 |
+
# Sparsity: 99.84%
|
| 46 |
+
```
|
| 47 |
+
|
| 48 |
+
Hugging Face makes it easy to collaboratively build and showcase your [Sentence Transformers](https://www.sbert.net/) models! You can collaborate with your organization, upload and showcase your own models in your profile ❤️
|
| 49 |
+
|
| 50 |
+
<div class="grid lg:grid-cols-3 gap-x-4 gap-y-7">
|
| 51 |
+
<a href="https://www.sbert.net/" class="block overflow-hidden group">
|
| 52 |
+
<div
|
| 53 |
+
class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center bg-[#FA8072]"
|
| 54 |
+
>
|
| 55 |
+
<img alt="" src="https://huggingface.co/spaces/sparse-encoder/README/resolve/main/sbertLogo.png" class="w-40" />
|
| 56 |
+
</div>
|
| 57 |
+
<div class="underline">Documentation</div>
|
| 58 |
+
</a>
|
| 59 |
+
<a
|
| 60 |
+
href="https://sbert.net/docs/package_reference/SentenceTransformer.html#sentence_transformers.SentenceTransformer.push_to_hub"
|
| 61 |
+
class="block overflow-hidden group"
|
| 62 |
+
>
|
| 63 |
+
<div
|
| 64 |
+
class="w-full h-40 mb-2 bg-gray-900 group-hover:bg-gray-850 rounded-lg flex items-start justify-start overflow-hidden"
|
| 65 |
+
>
|
| 66 |
+
<img
|
| 67 |
+
alt=""
|
| 68 |
+
src="https://huggingface.co/spaces/sparse-encoder/README/resolve/main/push-to-hub.png"
|
| 69 |
+
class="w-full h-40 object-cover overflow-hidden"
|
| 70 |
+
/>
|
| 71 |
+
</div>
|
| 72 |
+
<div class="underline">Push your Sentence Transformers models to the Hub ❤️ </div>
|
| 73 |
+
</a>
|
| 74 |
+
<a
|
| 75 |
+
href="https://huggingface.co/models?library=sentence-transformers&other=sparse&sort=downloads"
|
| 76 |
+
class="block overflow-hidden group"
|
| 77 |
+
>
|
| 78 |
+
<div
|
| 79 |
+
class="w-full h-40 mb-2 bg-gray-900 group-hover:bg-gray-850 rounded-lg flex items-start justify-start overflow-hidden"
|
| 80 |
+
>
|
| 81 |
+
<img
|
| 82 |
+
alt=""
|
| 83 |
+
src="https://huggingface.co/spaces/sparse-encoder/README/resolve/main/sbert-hf.png"
|
| 84 |
+
class="w-full h-40 object-cover overflow-hidden"
|
| 85 |
+
/>
|
| 86 |
+
</div>
|
| 87 |
+
<div class="underline">Find all SparseEncoder models on the 🤗 Hub</div>
|
| 88 |
+
</a>
|
| 89 |
+
</div>
|
| 90 |
+
|
| 91 |
+
To upload your SparseEncoder models to the Hugging Face Hub, log in with `huggingface-cli login` and use the [`push_to_hub`](https://sbert.net/docs/package_reference/sparse_encoder/SparseEncoder.html#sentence_transformers.sparse_encoder.SparseEncoder.push_to_hub) method within the Sentence Transformers library.
|
| 92 |
+
```python
|
| 93 |
+
from sentence_transformers import SparseEncoder
|
| 94 |
+
|
| 95 |
+
# Load or train a model
|
| 96 |
+
model = SparseEncoder(...)
|
| 97 |
+
# Push to Hub
|
| 98 |
+
model.push_to_hub("my_new_model")
|
| 99 |
+
```
|
| 100 |
+
|
| 101 |
+
Note that this repository hosts for now only examples of sparse-encoder models from the SentenceTransformers package that can be easily reproduced with the different training script examples.
|
| 102 |
+
|
| 103 |
+
More details at [Sparse Encoder > Training Examples](https://sbert.net/docs/sparse_encoder/training/examples.html) for the examples scripts and [Sparse Encoder > Pretrained Models](https://sbert.net/docs/sparse_encoder/pretrained_models.html) for the community pre-trained models, that you can also found for some of them in the following collections.
|
push-to-hub.png
ADDED
|
Git LFS Details
|
sbert-hf.png
ADDED
|
Git LFS Details
|
sbertLogo.png
ADDED
|
Git LFS Details
|