Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 3 |
+
import gradio as gr
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def run_inference(review_text: str) -> str:
|
| 7 |
+
"""
|
| 8 |
+
Perform inference on the given wine review text and return the predicted wine variety.
|
| 9 |
+
|
| 10 |
+
Args:
|
| 11 |
+
review_text (str): Wine review text in the format "country [SEP] description".
|
| 12 |
+
|
| 13 |
+
Returns:
|
| 14 |
+
str: The predicted wine variety using the model's id2label mapping if available.
|
| 15 |
+
"""
|
| 16 |
+
# Define model and tokenizer identifiers
|
| 17 |
+
model_id = "spawn99/modernbert-wine-classification"
|
| 18 |
+
tokenizer_id = "answerdotai/ModernBERT-base"
|
| 19 |
+
|
| 20 |
+
# Load tokenizer and model
|
| 21 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
|
| 22 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_id)
|
| 23 |
+
|
| 24 |
+
# Tokenize the input text
|
| 25 |
+
inputs = tokenizer(
|
| 26 |
+
review_text,
|
| 27 |
+
return_tensors="pt",
|
| 28 |
+
padding="max_length",
|
| 29 |
+
truncation=True,
|
| 30 |
+
max_length=256
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
model.eval()
|
| 34 |
+
with torch.no_grad():
|
| 35 |
+
outputs = model(**inputs)
|
| 36 |
+
logits = outputs.logits
|
| 37 |
+
|
| 38 |
+
# Determine prediction and map to label if available
|
| 39 |
+
pred = torch.argmax(logits, dim=-1).item()
|
| 40 |
+
variety = (
|
| 41 |
+
model.config.id2label.get(pred, str(pred))
|
| 42 |
+
if hasattr(model.config, "id2label") and model.config.id2label
|
| 43 |
+
else str(pred)
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
return variety
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def predict_wine_variety(country: str, description: str) -> dict:
|
| 50 |
+
"""
|
| 51 |
+
Combine the provided country and description, then perform inference.
|
| 52 |
+
Enforces a maximum character limit of 750 on the description.
|
| 53 |
+
|
| 54 |
+
Args:
|
| 55 |
+
country (str): The country of wine origin.
|
| 56 |
+
description (str): The wine review description.
|
| 57 |
+
|
| 58 |
+
Returns:
|
| 59 |
+
dict: Dictionary containing the predicted wine variety or an error message if the limit is exceeded.
|
| 60 |
+
"""
|
| 61 |
+
# Validate description length
|
| 62 |
+
if len(description) > 750:
|
| 63 |
+
return {"error": "Description exceeds 750 character limit. Please shorten your input."}
|
| 64 |
+
|
| 65 |
+
# Capitalize input values and format the review text accordingly.
|
| 66 |
+
review_text = f"{country.capitalize()} [SEP] {description.capitalize()}"
|
| 67 |
+
predicted_variety = run_inference(review_text)
|
| 68 |
+
return {"Variety": predicted_variety}
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
if __name__ == "__main__":
|
| 72 |
+
iface = gr.Interface(
|
| 73 |
+
fn=predict_wine_variety,
|
| 74 |
+
inputs=[
|
| 75 |
+
gr.Textbox(label="Country", placeholder="Enter country of origin..."),
|
| 76 |
+
gr.Textbox(label="Description", placeholder="Enter wine review description...")
|
| 77 |
+
],
|
| 78 |
+
outputs=gr.JSON(label="Prediction"),
|
| 79 |
+
title="Wine Variety Predictor",
|
| 80 |
+
description="Predict the wine variety based on country and description.",
|
| 81 |
+
flagging="never"
|
| 82 |
+
)
|
| 83 |
+
iface.launch()
|