Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -20,11 +20,16 @@ except ImportError:
|
|
| 20 |
|
| 21 |
# --- Configuration ---
|
| 22 |
# Model path is set to sojka
|
| 23 |
-
MODEL_PATH = os.getenv("MODEL_PATH", "AndromedaPL/sojka")
|
|
|
|
|
|
|
| 24 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 25 |
LABELS = ["self-harm", "hate", "vulgar", "sex", "crime"]
|
| 26 |
MAX_SEQ_LENGTH = 512
|
| 27 |
|
|
|
|
|
|
|
|
|
|
| 28 |
# Thresholds are now hardcoded
|
| 29 |
THRESHOLDS = {
|
| 30 |
"self-harm": 0.5,
|
|
@@ -38,11 +43,11 @@ THRESHOLDS = {
|
|
| 38 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 39 |
logger = logging.getLogger(__name__)
|
| 40 |
|
| 41 |
-
def load_model_and_tokenizer(model_path: str, device: str) -> Tuple[AutoModelForSequenceClassification, AutoTokenizer]:
|
| 42 |
"""Load the trained model and tokenizer"""
|
| 43 |
logger.info(f"Loading model from {model_path}")
|
| 44 |
|
| 45 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
| 46 |
|
| 47 |
if tokenizer.pad_token is None:
|
| 48 |
if tokenizer.eos_token:
|
|
@@ -84,7 +89,7 @@ def load_model_and_tokenizer(model_path: str, device: str) -> Tuple[AutoModelFor
|
|
| 84 |
|
| 85 |
# --- Load model globally ---
|
| 86 |
try:
|
| 87 |
-
model, tokenizer = load_model_and_tokenizer(MODEL_PATH, DEVICE)
|
| 88 |
model_loaded = True
|
| 89 |
except Exception as e:
|
| 90 |
logger.error(f"FATAL: Failed to load the model from {MODEL_PATH}: {e}")
|
|
|
|
| 20 |
|
| 21 |
# --- Configuration ---
|
| 22 |
# Model path is set to sojka
|
| 23 |
+
MODEL_PATH = os.getenv("MODEL_PATH", "AndromedaPL/sojka")
|
| 24 |
+
TOKENIZER_PATH = os.getenv("MODEL_PATH", "sdadas/mmlw-roberta-base")
|
| 25 |
+
|
| 26 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 27 |
LABELS = ["self-harm", "hate", "vulgar", "sex", "crime"]
|
| 28 |
MAX_SEQ_LENGTH = 512
|
| 29 |
|
| 30 |
+
|
| 31 |
+
HF_TOKEN = os.getenv('HF_TOKEN')
|
| 32 |
+
|
| 33 |
# Thresholds are now hardcoded
|
| 34 |
THRESHOLDS = {
|
| 35 |
"self-harm": 0.5,
|
|
|
|
| 43 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 44 |
logger = logging.getLogger(__name__)
|
| 45 |
|
| 46 |
+
def load_model_and_tokenizer(model_path: str, tokenizer_path: str, device: str) -> Tuple[AutoModelForSequenceClassification, AutoTokenizer]:
|
| 47 |
"""Load the trained model and tokenizer"""
|
| 48 |
logger.info(f"Loading model from {model_path}")
|
| 49 |
|
| 50 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path, use_fast=True)
|
| 51 |
|
| 52 |
if tokenizer.pad_token is None:
|
| 53 |
if tokenizer.eos_token:
|
|
|
|
| 89 |
|
| 90 |
# --- Load model globally ---
|
| 91 |
try:
|
| 92 |
+
model, tokenizer = load_model_and_tokenizer(MODEL_PATH, TOKENIZER_PATH, DEVICE)
|
| 93 |
model_loaded = True
|
| 94 |
except Exception as e:
|
| 95 |
logger.error(f"FATAL: Failed to load the model from {MODEL_PATH}: {e}")
|