Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -28,7 +28,9 @@ except ImportError:
|
|
| 28 |
MODEL_PATH = os.getenv("MODEL_PATH", "speakleash/sojka3")
|
| 29 |
TOKENIZER_PATH = os.getenv("TOKENIZER_PATH", "sdadas/mmlw-roberta-base")
|
| 30 |
|
| 31 |
-
|
|
|
|
|
|
|
| 32 |
|
| 33 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 34 |
LABELS = ["self-harm", "hate", "vulgar", "sex", "crime"]
|
|
@@ -51,11 +53,11 @@ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(
|
|
| 51 |
logger = logging.getLogger(__name__)
|
| 52 |
|
| 53 |
# HfApi instance
|
| 54 |
-
if
|
| 55 |
api = HfApi()
|
| 56 |
else:
|
| 57 |
api = None
|
| 58 |
-
logger.warning("
|
| 59 |
|
| 60 |
def log_prediction(log_data: dict):
|
| 61 |
logger.info("Logging to Hugging Face Hub...")
|
|
@@ -67,18 +69,18 @@ def log_prediction(log_data: dict):
|
|
| 67 |
timestamp = log_data.get('timestamp', datetime.now().timestamp())
|
| 68 |
|
| 69 |
try:
|
| 70 |
-
logger.info("Logging to Hugging Face Hub upload_file: ", log_data)
|
| 71 |
|
| 72 |
api.upload_file(
|
| 73 |
path_or_fileobj=json.dumps(log_data, indent=2, ensure_ascii=False).encode('utf-8'),
|
| 74 |
path_in_repo=f"predictions/{day}/{timestamp}.json",
|
| 75 |
-
repo_id=
|
| 76 |
repo_type="dataset",
|
| 77 |
commit_message="log prediction",
|
| 78 |
-
token=
|
| 79 |
-
run_as_future=
|
| 80 |
)
|
| 81 |
-
logger.info("Logging to Hugging Face Hub upload_file finished")
|
| 82 |
|
| 83 |
except Exception as e:
|
| 84 |
logger.error(f"Failed to log prediction to hub: {e}")
|
|
|
|
| 28 |
MODEL_PATH = os.getenv("MODEL_PATH", "speakleash/sojka3")
|
| 29 |
TOKENIZER_PATH = os.getenv("TOKENIZER_PATH", "sdadas/mmlw-roberta-base")
|
| 30 |
|
| 31 |
+
LOGS_REPO_ID = "speakleash/sojka-logs"
|
| 32 |
+
LOGS_HF_TOKEN = os.getenv("LOG_HF_TOKEN")
|
| 33 |
+
|
| 34 |
|
| 35 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
| 36 |
LABELS = ["self-harm", "hate", "vulgar", "sex", "crime"]
|
|
|
|
| 53 |
logger = logging.getLogger(__name__)
|
| 54 |
|
| 55 |
# HfApi instance
|
| 56 |
+
if LOGS_HF_TOKEN:
|
| 57 |
api = HfApi()
|
| 58 |
else:
|
| 59 |
api = None
|
| 60 |
+
logger.warning("LOGS_HF_TOKEN environment variable not set. Logging to Hugging Face Hub will be disabled.")
|
| 61 |
|
| 62 |
def log_prediction(log_data: dict):
|
| 63 |
logger.info("Logging to Hugging Face Hub...")
|
|
|
|
| 69 |
timestamp = log_data.get('timestamp', datetime.now().timestamp())
|
| 70 |
|
| 71 |
try:
|
| 72 |
+
#logger.info("Logging to Hugging Face Hub upload_file: ", log_data)
|
| 73 |
|
| 74 |
api.upload_file(
|
| 75 |
path_or_fileobj=json.dumps(log_data, indent=2, ensure_ascii=False).encode('utf-8'),
|
| 76 |
path_in_repo=f"predictions/{day}/{timestamp}.json",
|
| 77 |
+
repo_id=LOGS_REPO_ID,
|
| 78 |
repo_type="dataset",
|
| 79 |
commit_message="log prediction",
|
| 80 |
+
token=LOGS_HF_TOKEN,
|
| 81 |
+
run_as_future=True
|
| 82 |
)
|
| 83 |
+
#logger.info("Logging to Hugging Face Hub upload_file finished")
|
| 84 |
|
| 85 |
except Exception as e:
|
| 86 |
logger.error(f"Failed to log prediction to hub: {e}")
|