Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,29 +1,44 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import
|
|
|
|
|
|
|
| 3 |
|
| 4 |
-
# Load
|
| 5 |
-
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
#
|
| 8 |
def detect_phishing(email_text):
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
verdict = "⚠️ This email looks suspicious or potentially phishing."
|
| 14 |
-
else:
|
| 15 |
-
verdict = "✅ This email looks legitimate."
|
| 16 |
-
return f"{verdict}\n\nPrediction: {label}\nConfidence: {confidence:.2f}"
|
| 17 |
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
interface = gr.Interface(
|
| 20 |
fn=detect_phishing,
|
| 21 |
-
inputs=gr.Textbox(lines=15, placeholder="Paste the email
|
| 22 |
outputs="text",
|
| 23 |
title="Phishing Email Detector",
|
| 24 |
-
description="
|
| 25 |
)
|
| 26 |
|
| 27 |
-
# Launch the app
|
| 28 |
if __name__ == "__main__":
|
| 29 |
interface.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
|
| 6 |
+
# Load tokenizer and model
|
| 7 |
+
model_name = "cybersectony/phishing-email-detection-distilbert_v2.4.1"
|
| 8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 9 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 10 |
|
| 11 |
+
# Define the prediction function
|
| 12 |
def detect_phishing(email_text):
|
| 13 |
+
inputs = tokenizer(email_text, return_tensors="pt", truncation=True, max_length=512)
|
| 14 |
+
with torch.no_grad():
|
| 15 |
+
outputs = model(**inputs)
|
| 16 |
+
probs = F.softmax(outputs.logits, dim=-1)[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
+
labels = [
|
| 19 |
+
"Legitimate Email",
|
| 20 |
+
"Phishing URL",
|
| 21 |
+
"Legitimate URL",
|
| 22 |
+
"Phishing URL (Alt)"
|
| 23 |
+
]
|
| 24 |
+
label_probs = {label: float(prob) for label, prob in zip(labels, probs)}
|
| 25 |
+
predicted_label = max(label_probs, key=label_probs.get)
|
| 26 |
+
confidence = label_probs[predicted_label]
|
| 27 |
+
|
| 28 |
+
verdict = "⚠️ Suspicious Email Detected." if "Phishing" in predicted_label else "✅ Email Appears Legitimate."
|
| 29 |
+
result = f"{verdict}\n\nPrediction: {predicted_label}\nConfidence: {confidence:.2%}\n\nDetails:\n"
|
| 30 |
+
for label, prob in label_probs.items():
|
| 31 |
+
result += f"{label}: {prob:.2%}\n"
|
| 32 |
+
return result
|
| 33 |
+
|
| 34 |
+
# Create Gradio interface
|
| 35 |
interface = gr.Interface(
|
| 36 |
fn=detect_phishing,
|
| 37 |
+
inputs=gr.Textbox(lines=15, placeholder="Paste the email content here..."),
|
| 38 |
outputs="text",
|
| 39 |
title="Phishing Email Detector",
|
| 40 |
+
description="Detects whether an email is phishing or legitimate using a fine-tuned DistilBERT model."
|
| 41 |
)
|
| 42 |
|
|
|
|
| 43 |
if __name__ == "__main__":
|
| 44 |
interface.launch()
|