unfinished app.py

#1
by spuun - opened
Files changed (3) hide show
  1. app.py +11 -69
  2. onnx_.py +0 -59
  3. requirements.txt +1 -3
app.py CHANGED
@@ -1,75 +1,17 @@
1
- from transformers import pipeline
2
- from imgutils.data import rgb_encode, load_image
3
- from onnx_ import _open_onnx_model
4
- from PIL import Image
5
  import gradio as gr
6
- import numpy as np
7
- import os
8
- import requests
9
  import torch
10
- import json
11
 
12
- def _img_encode(image, size=(384,384), normalize=(0.5,0.5)):
13
- image = image.resize(size, Image.BILINEAR)
14
- data = rgb_encode(image, order_='CHW')
 
 
15
 
16
- if normalize is not None:
17
- mean_, std_ = normalize
18
- mean = np.asarray([mean_]).reshape((-1, 1, 1))
19
- std = np.asarray([std_]).reshape((-1, 1, 1))
20
- data = (data - mean) / std
21
-
22
- return data.astype(np.float32)
23
-
24
- nsfw_tf = pipeline(model="carbon225/vit-base-patch16-224-hentai")
25
-
26
- if not os.path.exists("timm.onnx"):
27
- open("timm.onnx", "wb").write(
28
- requests.get(
29
- "https://huggingface.co/deepghs/anime_rating/resolve/main/caformer_s36_plus/model.onnx"
30
- ).content
31
- )
32
- open("timmcfg.json", "wb").write(
33
- requests.get(
34
- "https://huggingface.co/deepghs/anime_rating/resolve/main/caformer_s36_plus/meta.json"
35
- ).content
36
- )
37
- else:
38
- print("Model already exists, skipping redownload")
39
-
40
- with open("timmcfg.json") as file:
41
- tm_cfg = json.load(file)
42
-
43
- nsfw_tm = _open_onnx_model("timm.onnx")
44
 
45
  def launch(img):
46
- weight = 0
47
- img = img.convert('RGB')
48
- tm_image = load_image(img, mode='RGB')
49
- tm_input_ = _img_encode(tm_image, size=(256, 256))[None, ...]
50
- tm_items, = nsfw_tm.run(['output'], {'input': tm_input_})
51
- tm_output = sorted(list(zip(tm_cfg["labels"], map(lambda x: x.item(), tm_items[0]))), key=lambda x: x[1], reverse=True)[0][0]
52
-
53
- match tm_output:
54
- case "safe":
55
- weight -= 1
56
- case "r15":
57
- weight += 2
58
- case "r18":
59
- weight += 2
60
-
61
- tf_output = nsfw_tf(img)[0]["label"]
62
-
63
- match tf_output:
64
- case "safe":
65
- weight -= 1
66
- case "suggestive":
67
- weight += 1
68
- case "r18":
69
- weight += 2
70
-
71
- print(sorted(list(zip(tm_cfg["labels"], map(lambda x: x.item(), tm_items[0]))), key=lambda x: x[1], reverse=True), tf_output)
72
- return weight > 0
73
-
74
- app = gr.Interface(fn=launch, inputs="pil", outputs="text")
75
- app.launch()
 
1
+ from transformers import AutoFeatureExtractor, AutoModelForImageClassification, pipeline
 
 
 
2
  import gradio as gr
3
+ import timm
 
 
4
  import torch
 
5
 
6
+ nsfw_tf = pipeline("image-classification",
7
+ model=AutoModelForImageClassification.from_pretrained(
8
+ "carbon225/vit-base-patch16-224-hentai"),
9
+ feature_extractor=AutoFeatureExtractor.from_pretrained(
10
+ "carbon225/vit-base-patch16-224-hentai"))
11
 
12
+ nsfw_tm = timm.create_model('deepghs/anime_rating', pretrained=True).eval()
13
+ tm_config = timm.data.resolve_model_data_config(model)
14
+ tm_trans = timm.data.create_transform(**tm_config, is_training=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
  def launch(img):
17
+ tm_output = nsfw_tm(transforms(img).unsqueeze(0))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
onnx_.py DELETED
@@ -1,59 +0,0 @@
1
- import logging
2
- import os
3
- import shutil
4
- from functools import lru_cache
5
- from typing import Optional
6
-
7
- from hbutils.system import pip_install
8
-
9
-
10
- def _ensure_onnxruntime():
11
- try:
12
- import onnxruntime
13
- except (ImportError, ModuleNotFoundError):
14
- logging.warning('Onnx runtime not installed, preparing to install ...')
15
- if shutil.which('nvidia-smi'):
16
- logging.info('Installing onnxruntime-gpu ...')
17
- pip_install(['onnxruntime-gpu'], silent=True)
18
- else:
19
- logging.info('Installing onnxruntime (cpu) ...')
20
- pip_install(['onnxruntime'], silent=True)
21
-
22
-
23
- _ensure_onnxruntime()
24
- from onnxruntime import get_available_providers, get_all_providers, InferenceSession, SessionOptions, \
25
- GraphOptimizationLevel
26
-
27
- alias = {
28
- 'gpu': "CUDAExecutionProvider",
29
- "trt": "TensorrtExecutionProvider",
30
- }
31
-
32
-
33
- def get_onnx_provider(provider: Optional[str] = None):
34
- if not provider:
35
- if "CUDAExecutionProvider" in get_available_providers():
36
- return "CUDAExecutionProvider"
37
- else:
38
- return "CPUExecutionProvider"
39
- elif provider.lower() in alias:
40
- return alias[provider.lower()]
41
- else:
42
- for p in get_all_providers():
43
- if provider.lower() == p.lower() or f'{provider}ExecutionProvider'.lower() == p.lower():
44
- return p
45
-
46
- raise ValueError(f'One of the {get_all_providers()!r} expected, '
47
- f'but unsupported provider {provider!r} found.')
48
-
49
-
50
- @lru_cache()
51
- def _open_onnx_model(ckpt: str, provider: str = None) -> InferenceSession:
52
- options = SessionOptions()
53
- options.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_ALL
54
- provider = provider or get_onnx_provider()
55
- if provider == "CPUExecutionProvider":
56
- options.intra_op_num_threads = os.cpu_count()
57
-
58
- logging.info(f'Model {ckpt!r} loaded with provider {provider!r}')
59
- return InferenceSession(ckpt, options, [provider])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
requirements.txt CHANGED
@@ -1,5 +1,3 @@
1
  torch
2
  transformers
3
- onnxruntime
4
- dghs-imgutils
5
- hbutils
 
1
  torch
2
  transformers
3
+ timm