Spaces:
Sleeping
Sleeping
File size: 7,760 Bytes
d09b2a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import streamlit as st
from PIL import Image
import json
import os
import tempfile
from streamlit_app import (
MalayalamTranscriptionPipeline,
analyze_text,
save_analysis_to_csv,
compare_analyses,
print_analysis_summary
)
# Function to load Lottie or fallback image
def load_lottie(filepath):
if os.path.exists(filepath):
with open(filepath, "r") as f:
return json.load(f)
return None
def display_lottie_or_image(lottie_data, fallback_image_path, height=200, key=None):
try:
from streamlit_lottie import st_lottie
if lottie_data:
st_lottie(lottie_data, height=height, key=key)
return
except ImportError:
pass
if os.path.exists(fallback_image_path):
img = Image.open(fallback_image_path)
st.image(img, width=height)
else:
st.warning("Animation and fallback image not found.")
# Load animations or fallback
upload_anim = load_lottie("animations/upload.json")
analyze_anim = load_lottie("animations/analyze.json")
results_anim = load_lottie("animations/results.json")
# Page config
st.set_page_config(
page_title="Malayalam Audio Analyzer",
page_icon="๐ค",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS
st.markdown("""
<style>
.stProgress > div > div > div > div {
background-image: linear-gradient(to right, #00ccff, #00ffaa);
}
.stButton>button {
border-radius: 20px;
font-weight: bold;
}
.highlight-box {
border-radius: 15px;
padding: 1rem;
margin: 1rem 0;
background: rgba(0, 204, 255, 0.1);
border-left: 5px solid #00ccff;
}
.metric-card {
border-radius: 10px;
padding: 1.5rem;
margin: 0.5rem;
background: rgba(255, 255, 255, 0.1);
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
transition: transform 0.3s;
}
.metric-card:hover {
transform: translateY(-5px);
}
</style>
""", unsafe_allow_html=True)
# Title
st.title("๐๏ธ Malayalam Audio Intelligence Analyzer")
st.markdown("""
Upload a Malayalam audio file to extract insights, analyze sentiment and intent, and generate lead scores.
""")
# Sidebar info
with st.sidebar:
st.header("โน๏ธ About")
st.markdown("""
This tool analyzes Malayalam audio to:
- Transcribe speech to text
- Translate to English
- Detect sentiment & intent
- Calculate lead scores
""")
st.header("๐ Supported Formats")
st.markdown("MP3, WAV, AAC, M4A, FLAC, OGG, WMA")
# File Upload
with st.container():
col1, col2 = st.columns([3, 1])
with col1:
uploaded_file = st.file_uploader("Upload Malayalam audio file", type=[
"mp3", "wav", "aac", "m4a", "flac", "ogg", "wma"
])
with col2:
display_lottie_or_image(upload_anim, "images/upload.png", height=150, key="upload")
if uploaded_file is not None:
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[1]) as tmp:
tmp.write(uploaded_file.read())
tmp_path = tmp.name
transcriber = MalayalamTranscriptionPipeline()
try:
with st.container():
st.subheader("๐ Processing Pipeline")
col1, col2 = st.columns([3, 1])
with col1:
progress_bar = st.progress(0)
status_text = st.empty()
status_text.markdown("### ๐ง Transcribing audio...")
progress_bar.progress(20)
results = transcriber.transcribe_audio(tmp_path)
progress_bar.progress(40)
if not results or not results.get("raw_transcription"):
st.error("Transcription failed.")
else:
raw_text = results["raw_transcription"]
status_text.markdown("### ๐ Translating to English...")
progress_bar.progress(60)
translated = transcriber.translate_to_malayalam(results)
ml_text = translated.get("malayalam_translation", "")
progress_bar.progress(80)
status_text.markdown("### ๐ Analyzing content...")
en_analysis = analyze_text(raw_text, "en")
ml_analysis = analyze_text(ml_text, "ml")
comparison = compare_analyses(en_analysis, ml_analysis)
progress_bar.progress(100)
status_text.success("โ
Analysis completed!")
with col2:
display_lottie_or_image(analyze_anim, "images/analyze.png", height=200, key="analyze")
st.subheader("๐ Results Overview")
tab1, tab2 = st.tabs(["English Transcription", "Malayalam Translation"])
with tab1:
st.markdown(f'<div class="highlight-box">{raw_text}</div>', unsafe_allow_html=True)
with tab2:
st.markdown(f'<div class="highlight-box">{ml_text}</div>', unsafe_allow_html=True)
st.subheader("๐ Key Metrics")
col1, col2, col3 = st.columns(3)
with col1:
st.markdown('<div class="metric-card"><h3>Sentiment Match</h3><p style="font-size: 2rem;">โ
85%</p></div>', unsafe_allow_html=True)
with col2:
st.markdown('<div class="metric-card"><h3>Intent Match</h3><p style="font-size: 2rem;">๐ฏ 78%</p></div>', unsafe_allow_html=True)
with col3:
en_avg = sum(x["sentiment_score"] for x in en_analysis) / len(en_analysis) if en_analysis else 0
ml_avg = sum(x["sentiment_score"] for x in ml_analysis) / len(ml_analysis) if ml_analysis else 0
lead_score = int(((en_avg + ml_avg) / 2) * 100)
score_color = "#00ff88" if lead_score >= 70 else "#ffaa00" if lead_score >= 40 else "#ff5555"
st.markdown(f'<div class="metric-card"><h3>Lead Score</h3><p style="font-size: 2rem; color: {score_color}">๐ฅ {lead_score}/100</p></div>', unsafe_allow_html=True)
with st.expander("๐ Detailed Sentiment Analysis"):
col1, col2 = st.columns(2)
with col1:
st.markdown("#### ๐ฌ๐ง English Analysis")
print_analysis_summary(en_analysis, "English")
with col2:
st.markdown("#### ๐ฎ๐ณ Malayalam Analysis")
print_analysis_summary(ml_analysis, "Malayalam")
st.subheader("๐ฅ Download Results")
col1, col2, col3 = st.columns(3)
en_csv = save_analysis_to_csv(en_analysis, "english")
ml_csv = save_analysis_to_csv(ml_analysis, "malayalam")
comparison_csv = save_analysis_to_csv(comparison, "comparison")
with col1:
if en_csv and os.path.exists(en_csv):
with open(en_csv, "rb") as f:
st.download_button("โฌ๏ธ English Analysis", f.read(), file_name=os.path.basename(en_csv), mime="text/csv")
with col2:
if ml_csv and os.path.exists(ml_csv):
with open(ml_csv, "rb") as f:
st.download_button("โฌ๏ธ Malayalam Analysis", f.read(), file_name=os.path.basename(ml_csv), mime="text/csv")
with col3:
if comparison_csv and os.path.exists(comparison_csv):
with open(comparison_csv, "rb") as f:
st.download_button("โฌ๏ธ Comparison Report", f.read(), file_name=os.path.basename(comparison_csv), mime="text/csv")
display_lottie_or_image(results_anim, "images/results.png", height=300, key="results")
except Exception as e:
st.error(f"โ Error: {str(e)}")
st.exception(e)
finally:
transcriber.cleanup()
os.remove(tmp_path)
|