Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,21 +3,19 @@ import numpy as np
|
|
| 3 |
import random
|
| 4 |
import torch
|
| 5 |
from diffusers import StableDiffusion3Pipeline, SD3Transformer2DModel, FlowMatchEulerDiscreteScheduler
|
|
|
|
| 6 |
|
| 7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 8 |
dtype = torch.float16
|
| 9 |
|
| 10 |
-
repo = "
|
| 11 |
-
transformer_repo= "diffusers-internal-dev/pm-revamp"
|
| 12 |
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
pipe = StableDiffusion3Pipeline.from_pretrained(repo, transformer=transformer, torch_dtype=torch.float16).to(device)
|
| 16 |
-
pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config(pipe.scheduler.config, shift=3.0)
|
| 17 |
|
| 18 |
MAX_SEED = np.iinfo(np.int32).max
|
| 19 |
MAX_IMAGE_SIZE = 1344
|
| 20 |
|
|
|
|
| 21 |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
|
| 22 |
|
| 23 |
if randomize_seed:
|
|
|
|
| 3 |
import random
|
| 4 |
import torch
|
| 5 |
from diffusers import StableDiffusion3Pipeline, SD3Transformer2DModel, FlowMatchEulerDiscreteScheduler
|
| 6 |
+
import spaces
|
| 7 |
|
| 8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 9 |
dtype = torch.float16
|
| 10 |
|
| 11 |
+
repo = "stabilityai/stable-diffusion-3-medium"
|
|
|
|
| 12 |
|
| 13 |
+
pipe = StableDiffusion3Pipeline.from_pretrained(repo, torch_dtype=torch.float16).to(device)
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
MAX_SEED = np.iinfo(np.int32).max
|
| 16 |
MAX_IMAGE_SIZE = 1344
|
| 17 |
|
| 18 |
+
@spaces.GPU
|
| 19 |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
|
| 20 |
|
| 21 |
if randomize_seed:
|