"""
@@ -563,7 +316,7 @@ with block:
                 loading_icon = gr.HTML(loading_icon_html)
                 share_button = gr.Button("Share to community", elem_id="share-btn")
 
-        ex = gr.Examples(examples=examples, fn=infer, inputs=[text, samples, steps, scale, seed], outputs=[gallery, community_icon, loading_icon, share_button], cache_examples=False)
+        ex = gr.Examples(examples=examples, fn=infer, inputs=[text, samples, steps, scale, seed], outputs=[gallery], cache_examples=False)
         ex.dataset.headers = [""]
 
         text.submit(infer, inputs=[text, samples, steps, scale, seed], outputs=[gallery])
@@ -578,7 +331,7 @@ with block:
         gr.HTML(
             """
                 
                 
@@ -590,4 +343,4 @@ Despite how impressive being able to turn text into image is, beware to the fact
            """
         )
 
-block.queue(concurrency_count=1, max_size=25).launch(max_threads=150)
\ No newline at end of file
+block.queue(concurrency_count=1, max_size=50).launch(max_threads=150)
\ No newline at end of file
diff --git a/configs/stable-diffusion/v2-inference-v.yaml b/configs/stable-diffusion/v2-inference-v.yaml
deleted file mode 100644
index 8ec8dfbfefe94ae8522c93017668fea78d580acf..0000000000000000000000000000000000000000
--- a/configs/stable-diffusion/v2-inference-v.yaml
+++ /dev/null
@@ -1,68 +0,0 @@
-model:
-  base_learning_rate: 1.0e-4
-  target: ldm.models.diffusion.ddpm.LatentDiffusion
-  params:
-    parameterization: "v"
-    linear_start: 0.00085
-    linear_end: 0.0120
-    num_timesteps_cond: 1
-    log_every_t: 200
-    timesteps: 1000
-    first_stage_key: "jpg"
-    cond_stage_key: "txt"
-    image_size: 64
-    channels: 4
-    cond_stage_trainable: false
-    conditioning_key: crossattn
-    monitor: val/loss_simple_ema
-    scale_factor: 0.18215
-    use_ema: False # we set this to false because this is an inference only config
-
-    unet_config:
-      target: ldm.modules.diffusionmodules.openaimodel.UNetModel
-      params:
-        use_checkpoint: True
-        use_fp16: True
-        image_size: 32 # unused
-        in_channels: 4
-        out_channels: 4
-        model_channels: 320
-        attention_resolutions: [ 4, 2, 1 ]
-        num_res_blocks: 2
-        channel_mult: [ 1, 2, 4, 4 ]
-        num_head_channels: 64 # need to fix for flash-attn
-        use_spatial_transformer: True
-        use_linear_in_transformer: True
-        transformer_depth: 1
-        context_dim: 1024
-        legacy: False
-
-    first_stage_config:
-      target: ldm.models.autoencoder.AutoencoderKL
-      params:
-        embed_dim: 4
-        monitor: val/rec_loss
-        ddconfig:
-          #attn_type: "vanilla-xformers"
-          double_z: true
-          z_channels: 4
-          resolution: 256
-          in_channels: 3
-          out_ch: 3
-          ch: 128
-          ch_mult:
-          - 1
-          - 2
-          - 4
-          - 4
-          num_res_blocks: 2
-          attn_resolutions: []
-          dropout: 0.0
-        lossconfig:
-          target: torch.nn.Identity
-
-    cond_stage_config:
-      target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
-      params:
-        freeze: True
-        layer: "penultimate"
diff --git a/configs/stable-diffusion/v2-inference.yaml b/configs/stable-diffusion/v2-inference.yaml
deleted file mode 100644
index 152c4f3c2b36c3b246a9cb10eb8166134b0d2e1c..0000000000000000000000000000000000000000
--- a/configs/stable-diffusion/v2-inference.yaml
+++ /dev/null
@@ -1,67 +0,0 @@
-model:
-  base_learning_rate: 1.0e-4
-  target: ldm.models.diffusion.ddpm.LatentDiffusion
-  params:
-    linear_start: 0.00085
-    linear_end: 0.0120
-    num_timesteps_cond: 1
-    log_every_t: 200
-    timesteps: 1000
-    first_stage_key: "jpg"
-    cond_stage_key: "txt"
-    image_size: 64
-    channels: 4
-    cond_stage_trainable: false
-    conditioning_key: crossattn
-    monitor: val/loss_simple_ema
-    scale_factor: 0.18215
-    use_ema: False # we set this to false because this is an inference only config
-
-    unet_config:
-      target: ldm.modules.diffusionmodules.openaimodel.UNetModel
-      params:
-        use_checkpoint: True
-        use_fp16: True
-        image_size: 32 # unused
-        in_channels: 4
-        out_channels: 4
-        model_channels: 320
-        attention_resolutions: [ 4, 2, 1 ]
-        num_res_blocks: 2
-        channel_mult: [ 1, 2, 4, 4 ]
-        num_head_channels: 64 # need to fix for flash-attn
-        use_spatial_transformer: True
-        use_linear_in_transformer: True
-        transformer_depth: 1
-        context_dim: 1024
-        legacy: False
-
-    first_stage_config:
-      target: ldm.models.autoencoder.AutoencoderKL
-      params:
-        embed_dim: 4
-        monitor: val/rec_loss
-        ddconfig:
-          #attn_type: "vanilla-xformers"
-          double_z: true
-          z_channels: 4
-          resolution: 256
-          in_channels: 3
-          out_ch: 3
-          ch: 128
-          ch_mult:
-          - 1
-          - 2
-          - 4
-          - 4
-          num_res_blocks: 2
-          attn_resolutions: []
-          dropout: 0.0
-        lossconfig:
-          target: torch.nn.Identity
-
-    cond_stage_config:
-      target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
-      params:
-        freeze: True
-        layer: "penultimate"
diff --git a/configs/stable-diffusion/v2-inpainting-inference.yaml b/configs/stable-diffusion/v2-inpainting-inference.yaml
deleted file mode 100644
index 32a9471d71b828c51bcbbabfe34c5f6c8282c803..0000000000000000000000000000000000000000
--- a/configs/stable-diffusion/v2-inpainting-inference.yaml
+++ /dev/null
@@ -1,158 +0,0 @@
-model:
-  base_learning_rate: 5.0e-05
-  target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion
-  params:
-    linear_start: 0.00085
-    linear_end: 0.0120
-    num_timesteps_cond: 1
-    log_every_t: 200
-    timesteps: 1000
-    first_stage_key: "jpg"
-    cond_stage_key: "txt"
-    image_size: 64
-    channels: 4
-    cond_stage_trainable: false
-    conditioning_key: hybrid
-    scale_factor: 0.18215
-    monitor: val/loss_simple_ema
-    finetune_keys: null
-    use_ema: False
-
-    unet_config:
-      target: ldm.modules.diffusionmodules.openaimodel.UNetModel
-      params:
-        use_checkpoint: True
-        image_size: 32 # unused
-        in_channels: 9
-        out_channels: 4
-        model_channels: 320
-        attention_resolutions: [ 4, 2, 1 ]
-        num_res_blocks: 2
-        channel_mult: [ 1, 2, 4, 4 ]
-        num_head_channels: 64 # need to fix for flash-attn
-        use_spatial_transformer: True
-        use_linear_in_transformer: True
-        transformer_depth: 1
-        context_dim: 1024
-        legacy: False
-
-    first_stage_config:
-      target: ldm.models.autoencoder.AutoencoderKL
-      params:
-        embed_dim: 4
-        monitor: val/rec_loss
-        ddconfig:
-          #attn_type: "vanilla-xformers"
-          double_z: true
-          z_channels: 4
-          resolution: 256
-          in_channels: 3
-          out_ch: 3
-          ch: 128
-          ch_mult:
-            - 1
-            - 2
-            - 4
-            - 4
-          num_res_blocks: 2
-          attn_resolutions: [ ]
-          dropout: 0.0
-        lossconfig:
-          target: torch.nn.Identity
-
-    cond_stage_config:
-      target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
-      params:
-        freeze: True
-        layer: "penultimate"
-
-
-data:
-  target: ldm.data.laion.WebDataModuleFromConfig
-  params:
-    tar_base: null  # for concat as in LAION-A
-    p_unsafe_threshold: 0.1
-    filter_word_list: "data/filters.yaml"
-    max_pwatermark: 0.45
-    batch_size: 8
-    num_workers: 6
-    multinode: True
-    min_size: 512
-    train:
-      shards:
-        - "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-0/{00000..18699}.tar -"
-        - "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-1/{00000..18699}.tar -"
-        - "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-2/{00000..18699}.tar -"
-        - "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-3/{00000..18699}.tar -"
-        - "pipe:aws s3 cp s3://stability-aws/laion-a-native/part-4/{00000..18699}.tar -"  #{00000-94333}.tar"
-      shuffle: 10000
-      image_key: jpg
-      image_transforms:
-      - target: torchvision.transforms.Resize
-        params:
-          size: 512
-          interpolation: 3
-      - target: torchvision.transforms.RandomCrop
-        params:
-          size: 512
-      postprocess:
-        target: ldm.data.laion.AddMask
-        params:
-          mode: "512train-large"
-          p_drop: 0.25
-    # NOTE use enough shards to avoid empty validation loops in workers
-    validation:
-      shards:
-        - "pipe:aws s3 cp s3://deep-floyd-s3/datasets/laion_cleaned-part5/{93001..94333}.tar - "
-      shuffle: 0
-      image_key: jpg
-      image_transforms:
-      - target: torchvision.transforms.Resize
-        params:
-          size: 512
-          interpolation: 3
-      - target: torchvision.transforms.CenterCrop
-        params:
-          size: 512
-      postprocess:
-        target: ldm.data.laion.AddMask
-        params:
-          mode: "512train-large"
-          p_drop: 0.25
-
-lightning:
-  find_unused_parameters: True
-  modelcheckpoint:
-    params:
-      every_n_train_steps: 5000
-
-  callbacks:
-    metrics_over_trainsteps_checkpoint:
-      params:
-        every_n_train_steps: 10000
-
-    image_logger:
-      target: main.ImageLogger
-      params:
-        enable_autocast: False
-        disabled: False
-        batch_frequency: 1000
-        max_images: 4
-        increase_log_steps: False
-        log_first_step: False
-        log_images_kwargs:
-          use_ema_scope: False
-          inpaint: False
-          plot_progressive_rows: False
-          plot_diffusion_rows: False
-          N: 4
-          unconditional_guidance_scale: 5.0
-          unconditional_guidance_label: [""]
-          ddim_steps: 50  # todo check these out for depth2img,
-          ddim_eta: 0.0   # todo check these out for depth2img,
-
-  trainer:
-    benchmark: True
-    val_check_interval: 5000000
-    num_sanity_val_steps: 0
-    accumulate_grad_batches: 1
diff --git a/configs/stable-diffusion/v2-midas-inference.yaml b/configs/stable-diffusion/v2-midas-inference.yaml
deleted file mode 100644
index f20c30f618b81091e31c2c4cf15325fa38638af4..0000000000000000000000000000000000000000
--- a/configs/stable-diffusion/v2-midas-inference.yaml
+++ /dev/null
@@ -1,74 +0,0 @@
-model:
-  base_learning_rate: 5.0e-07
-  target: ldm.models.diffusion.ddpm.LatentDepth2ImageDiffusion
-  params:
-    linear_start: 0.00085
-    linear_end: 0.0120
-    num_timesteps_cond: 1
-    log_every_t: 200
-    timesteps: 1000
-    first_stage_key: "jpg"
-    cond_stage_key: "txt"
-    image_size: 64
-    channels: 4
-    cond_stage_trainable: false
-    conditioning_key: hybrid
-    scale_factor: 0.18215
-    monitor: val/loss_simple_ema
-    finetune_keys: null
-    use_ema: False
-
-    depth_stage_config:
-      target: ldm.modules.midas.api.MiDaSInference
-      params:
-        model_type: "dpt_hybrid"
-
-    unet_config:
-      target: ldm.modules.diffusionmodules.openaimodel.UNetModel
-      params:
-        use_checkpoint: True
-        image_size: 32 # unused
-        in_channels: 5
-        out_channels: 4
-        model_channels: 320
-        attention_resolutions: [ 4, 2, 1 ]
-        num_res_blocks: 2
-        channel_mult: [ 1, 2, 4, 4 ]
-        num_head_channels: 64 # need to fix for flash-attn
-        use_spatial_transformer: True
-        use_linear_in_transformer: True
-        transformer_depth: 1
-        context_dim: 1024
-        legacy: False
-
-    first_stage_config:
-      target: ldm.models.autoencoder.AutoencoderKL
-      params:
-        embed_dim: 4
-        monitor: val/rec_loss
-        ddconfig:
-          #attn_type: "vanilla-xformers"
-          double_z: true
-          z_channels: 4
-          resolution: 256
-          in_channels: 3
-          out_ch: 3
-          ch: 128
-          ch_mult:
-            - 1
-            - 2
-            - 4
-            - 4
-          num_res_blocks: 2
-          attn_resolutions: [ ]
-          dropout: 0.0
-        lossconfig:
-          target: torch.nn.Identity
-
-    cond_stage_config:
-      target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
-      params:
-        freeze: True
-        layer: "penultimate"
-
-
diff --git a/configs/stable-diffusion/x4-upscaling.yaml b/configs/stable-diffusion/x4-upscaling.yaml
deleted file mode 100644
index 2db0964af699f86d1891c761710a2d53f59b842c..0000000000000000000000000000000000000000
--- a/configs/stable-diffusion/x4-upscaling.yaml
+++ /dev/null
@@ -1,76 +0,0 @@
-model:
-  base_learning_rate: 1.0e-04
-  target: ldm.models.diffusion.ddpm.LatentUpscaleDiffusion
-  params:
-    parameterization: "v"
-    low_scale_key: "lr"
-    linear_start: 0.0001
-    linear_end: 0.02
-    num_timesteps_cond: 1
-    log_every_t: 200
-    timesteps: 1000
-    first_stage_key: "jpg"
-    cond_stage_key: "txt"
-    image_size: 128
-    channels: 4
-    cond_stage_trainable: false
-    conditioning_key: "hybrid-adm"
-    monitor: val/loss_simple_ema
-    scale_factor: 0.08333
-    use_ema: False
-
-    low_scale_config:
-      target: ldm.modules.diffusionmodules.upscaling.ImageConcatWithNoiseAugmentation
-      params:
-        noise_schedule_config: # image space
-          linear_start: 0.0001
-          linear_end: 0.02
-        max_noise_level: 350
-
-    unet_config:
-      target: ldm.modules.diffusionmodules.openaimodel.UNetModel
-      params:
-        use_checkpoint: True
-        num_classes: 1000  # timesteps for noise conditioning (here constant, just need one)
-        image_size: 128
-        in_channels: 7
-        out_channels: 4
-        model_channels: 256
-        attention_resolutions: [ 2,4,8]
-        num_res_blocks: 2
-        channel_mult: [ 1, 2, 2, 4]
-        disable_self_attentions: [True, True, True, False]
-        disable_middle_self_attn: False
-        num_heads: 8
-        use_spatial_transformer: True
-        transformer_depth: 1
-        context_dim: 1024
-        legacy: False
-        use_linear_in_transformer: True
-
-    first_stage_config:
-      target: ldm.models.autoencoder.AutoencoderKL
-      params:
-        embed_dim: 4
-        ddconfig:
-          # attn_type: "vanilla-xformers" this model needs efficient attention to be feasible on HR data, also the decoder seems to break in half precision (UNet is fine though)
-          double_z: True
-          z_channels: 4
-          resolution: 256
-          in_channels: 3
-          out_ch: 3
-          ch: 128
-          ch_mult: [ 1,2,4 ]  # num_down = len(ch_mult)-1
-          num_res_blocks: 2
-          attn_resolutions: [ ]
-          dropout: 0.0
-
-        lossconfig:
-          target: torch.nn.Identity
-
-    cond_stage_config:
-      target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
-      params:
-        freeze: True
-        layer: "penultimate"
-
diff --git a/environment.yaml b/environment.yaml
deleted file mode 100644
index 4687b309b60ae2d6040fcb3f90a380cf6fb11b21..0000000000000000000000000000000000000000
--- a/environment.yaml
+++ /dev/null
@@ -1,29 +0,0 @@
-name: ldm
-channels:
-  - pytorch
-  - defaults
-dependencies:
-  - python=3.8.5
-  - pip=20.3
-  - cudatoolkit=11.3
-  - pytorch=1.12.1
-  - torchvision=0.13.1
-  - numpy=1.23.1
-  - pip:
-    - albumentations==1.3.0
-    - opencv-python==4.6.0.66
-    - imageio==2.9.0
-    - imageio-ffmpeg==0.4.2
-    - pytorch-lightning==1.4.2
-    - omegaconf==2.1.1
-    - test-tube>=0.7.5
-    - streamlit==1.12.1
-    - einops==0.3.0
-    - transformers==4.19.2
-    - webdataset==0.2.5
-    - kornia==0.6
-    - open_clip_torch==2.0.2
-    - invisible-watermark>=0.1.5
-    - streamlit-drawable-canvas==0.8.0
-    - torchmetrics==0.6.0
-    - -e .
diff --git a/ldm/data/__init__.py b/ldm/data/__init__.py
deleted file mode 100644
index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000
diff --git a/ldm/data/util.py b/ldm/data/util.py
deleted file mode 100644
index 5b60ceb2349e3bd7900ff325740e2022d2903b1c..0000000000000000000000000000000000000000
--- a/ldm/data/util.py
+++ /dev/null
@@ -1,24 +0,0 @@
-import torch
-
-from ldm.modules.midas.api import load_midas_transform
-
-
-class AddMiDaS(object):
-    def __init__(self, model_type):
-        super().__init__()
-        self.transform = load_midas_transform(model_type)
-
-    def pt2np(self, x):
-        x = ((x + 1.0) * .5).detach().cpu().numpy()
-        return x
-
-    def np2pt(self, x):
-        x = torch.from_numpy(x) * 2 - 1.
-        return x
-
-    def __call__(self, sample):
-        # sample['jpg'] is tensor hwc in [-1, 1] at this point
-        x = self.pt2np(sample['jpg'])
-        x = self.transform({"image": x})["image"]
-        sample['midas_in'] = x
-        return sample
\ No newline at end of file
diff --git a/ldm/models/autoencoder.py b/ldm/models/autoencoder.py
deleted file mode 100644
index d122549995ce2cd64092c81a58419ed4a15a02fd..0000000000000000000000000000000000000000
--- a/ldm/models/autoencoder.py
+++ /dev/null
@@ -1,219 +0,0 @@
-import torch
-import pytorch_lightning as pl
-import torch.nn.functional as F
-from contextlib import contextmanager
-
-from ldm.modules.diffusionmodules.model import Encoder, Decoder
-from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
-
-from ldm.util import instantiate_from_config
-from ldm.modules.ema import LitEma
-
-
-class AutoencoderKL(pl.LightningModule):
-    def __init__(self,
-                 ddconfig,
-                 lossconfig,
-                 embed_dim,
-                 ckpt_path=None,
-                 ignore_keys=[],
-                 image_key="image",
-                 colorize_nlabels=None,
-                 monitor=None,
-                 ema_decay=None,
-                 learn_logvar=False
-                 ):
-        super().__init__()
-        self.learn_logvar = learn_logvar
-        self.image_key = image_key
-        self.encoder = Encoder(**ddconfig)
-        self.decoder = Decoder(**ddconfig)
-        self.loss = instantiate_from_config(lossconfig)
-        assert ddconfig["double_z"]
-        self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
-        self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
-        self.embed_dim = embed_dim
-        if colorize_nlabels is not None:
-            assert type(colorize_nlabels)==int
-            self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
-        if monitor is not None:
-            self.monitor = monitor
-
-        self.use_ema = ema_decay is not None
-        if self.use_ema:
-            self.ema_decay = ema_decay
-            assert 0. < ema_decay < 1.
-            self.model_ema = LitEma(self, decay=ema_decay)
-            print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
-
-        if ckpt_path is not None:
-            self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
-
-    def init_from_ckpt(self, path, ignore_keys=list()):
-        sd = torch.load(path, map_location="cpu")["state_dict"]
-        keys = list(sd.keys())
-        for k in keys:
-            for ik in ignore_keys:
-                if k.startswith(ik):
-                    print("Deleting key {} from state_dict.".format(k))
-                    del sd[k]
-        self.load_state_dict(sd, strict=False)
-        print(f"Restored from {path}")
-
-    @contextmanager
-    def ema_scope(self, context=None):
-        if self.use_ema:
-            self.model_ema.store(self.parameters())
-            self.model_ema.copy_to(self)
-            if context is not None:
-                print(f"{context}: Switched to EMA weights")
-        try:
-            yield None
-        finally:
-            if self.use_ema:
-                self.model_ema.restore(self.parameters())
-                if context is not None:
-                    print(f"{context}: Restored training weights")
-
-    def on_train_batch_end(self, *args, **kwargs):
-        if self.use_ema:
-            self.model_ema(self)
-
-    def encode(self, x):
-        h = self.encoder(x)
-        moments = self.quant_conv(h)
-        posterior = DiagonalGaussianDistribution(moments)
-        return posterior
-
-    def decode(self, z):
-        z = self.post_quant_conv(z)
-        dec = self.decoder(z)
-        return dec
-
-    def forward(self, input, sample_posterior=True):
-        posterior = self.encode(input)
-        if sample_posterior:
-            z = posterior.sample()
-        else:
-            z = posterior.mode()
-        dec = self.decode(z)
-        return dec, posterior
-
-    def get_input(self, batch, k):
-        x = batch[k]
-        if len(x.shape) == 3:
-            x = x[..., None]
-        x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
-        return x
-
-    def training_step(self, batch, batch_idx, optimizer_idx):
-        inputs = self.get_input(batch, self.image_key)
-        reconstructions, posterior = self(inputs)
-
-        if optimizer_idx == 0:
-            # train encoder+decoder+logvar
-            aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
-                                            last_layer=self.get_last_layer(), split="train")
-            self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
-            self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
-            return aeloss
-
-        if optimizer_idx == 1:
-            # train the discriminator
-            discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
-                                                last_layer=self.get_last_layer(), split="train")
-
-            self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
-            self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
-            return discloss
-
-    def validation_step(self, batch, batch_idx):
-        log_dict = self._validation_step(batch, batch_idx)
-        with self.ema_scope():
-            log_dict_ema = self._validation_step(batch, batch_idx, postfix="_ema")
-        return log_dict
-
-    def _validation_step(self, batch, batch_idx, postfix=""):
-        inputs = self.get_input(batch, self.image_key)
-        reconstructions, posterior = self(inputs)
-        aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
-                                        last_layer=self.get_last_layer(), split="val"+postfix)
-
-        discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
-                                            last_layer=self.get_last_layer(), split="val"+postfix)
-
-        self.log(f"val{postfix}/rec_loss", log_dict_ae[f"val{postfix}/rec_loss"])
-        self.log_dict(log_dict_ae)
-        self.log_dict(log_dict_disc)
-        return self.log_dict
-
-    def configure_optimizers(self):
-        lr = self.learning_rate
-        ae_params_list = list(self.encoder.parameters()) + list(self.decoder.parameters()) + list(
-            self.quant_conv.parameters()) + list(self.post_quant_conv.parameters())
-        if self.learn_logvar:
-            print(f"{self.__class__.__name__}: Learning logvar")
-            ae_params_list.append(self.loss.logvar)
-        opt_ae = torch.optim.Adam(ae_params_list,
-                                  lr=lr, betas=(0.5, 0.9))
-        opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
-                                    lr=lr, betas=(0.5, 0.9))
-        return [opt_ae, opt_disc], []
-
-    def get_last_layer(self):
-        return self.decoder.conv_out.weight
-
-    @torch.no_grad()
-    def log_images(self, batch, only_inputs=False, log_ema=False, **kwargs):
-        log = dict()
-        x = self.get_input(batch, self.image_key)
-        x = x.to(self.device)
-        if not only_inputs:
-            xrec, posterior = self(x)
-            if x.shape[1] > 3:
-                # colorize with random projection
-                assert xrec.shape[1] > 3
-                x = self.to_rgb(x)
-                xrec = self.to_rgb(xrec)
-            log["samples"] = self.decode(torch.randn_like(posterior.sample()))
-            log["reconstructions"] = xrec
-            if log_ema or self.use_ema:
-                with self.ema_scope():
-                    xrec_ema, posterior_ema = self(x)
-                    if x.shape[1] > 3:
-                        # colorize with random projection
-                        assert xrec_ema.shape[1] > 3
-                        xrec_ema = self.to_rgb(xrec_ema)
-                    log["samples_ema"] = self.decode(torch.randn_like(posterior_ema.sample()))
-                    log["reconstructions_ema"] = xrec_ema
-        log["inputs"] = x
-        return log
-
-    def to_rgb(self, x):
-        assert self.image_key == "segmentation"
-        if not hasattr(self, "colorize"):
-            self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
-        x = F.conv2d(x, weight=self.colorize)
-        x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
-        return x
-
-
-class IdentityFirstStage(torch.nn.Module):
-    def __init__(self, *args, vq_interface=False, **kwargs):
-        self.vq_interface = vq_interface
-        super().__init__()
-
-    def encode(self, x, *args, **kwargs):
-        return x
-
-    def decode(self, x, *args, **kwargs):
-        return x
-
-    def quantize(self, x, *args, **kwargs):
-        if self.vq_interface:
-            return x, None, [None, None, None]
-        return x
-
-    def forward(self, x, *args, **kwargs):
-        return x
-
diff --git a/ldm/models/diffusion/__init__.py b/ldm/models/diffusion/__init__.py
deleted file mode 100644
index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000
diff --git a/ldm/models/diffusion/ddim.py b/ldm/models/diffusion/ddim.py
deleted file mode 100644
index 27ead0ea914c64c747b64e690662899fb3801144..0000000000000000000000000000000000000000
--- a/ldm/models/diffusion/ddim.py
+++ /dev/null
@@ -1,336 +0,0 @@
-"""SAMPLING ONLY."""
-
-import torch
-import numpy as np
-from tqdm import tqdm
-
-from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor
-
-
-class DDIMSampler(object):
-    def __init__(self, model, schedule="linear", **kwargs):
-        super().__init__()
-        self.model = model
-        self.ddpm_num_timesteps = model.num_timesteps
-        self.schedule = schedule
-
-    def register_buffer(self, name, attr):
-        if type(attr) == torch.Tensor:
-            if attr.device != torch.device("cuda"):
-                attr = attr.to(torch.device("cuda"))
-        setattr(self, name, attr)
-
-    def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
-        self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
-                                                  num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
-        alphas_cumprod = self.model.alphas_cumprod
-        assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
-        to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
-
-        self.register_buffer('betas', to_torch(self.model.betas))
-        self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
-        self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
-
-        # calculations for diffusion q(x_t | x_{t-1}) and others
-        self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
-        self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
-        self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
-        self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
-        self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
-
-        # ddim sampling parameters
-        ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
-                                                                                   ddim_timesteps=self.ddim_timesteps,
-                                                                                   eta=ddim_eta,verbose=verbose)
-        self.register_buffer('ddim_sigmas', ddim_sigmas)
-        self.register_buffer('ddim_alphas', ddim_alphas)
-        self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
-        self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
-        sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
-            (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
-                        1 - self.alphas_cumprod / self.alphas_cumprod_prev))
-        self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
-
-    @torch.no_grad()
-    def sample(self,
-               S,
-               batch_size,
-               shape,
-               conditioning=None,
-               callback=None,
-               normals_sequence=None,
-               img_callback=None,
-               quantize_x0=False,
-               eta=0.,
-               mask=None,
-               x0=None,
-               temperature=1.,
-               noise_dropout=0.,
-               score_corrector=None,
-               corrector_kwargs=None,
-               verbose=True,
-               x_T=None,
-               log_every_t=100,
-               unconditional_guidance_scale=1.,
-               unconditional_conditioning=None, # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
-               dynamic_threshold=None,
-               ucg_schedule=None,
-               **kwargs
-               ):
-        if conditioning is not None:
-            if isinstance(conditioning, dict):
-                ctmp = conditioning[list(conditioning.keys())[0]]
-                while isinstance(ctmp, list): ctmp = ctmp[0]
-                cbs = ctmp.shape[0]
-                if cbs != batch_size:
-                    print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
-
-            elif isinstance(conditioning, list):
-                for ctmp in conditioning:
-                    if ctmp.shape[0] != batch_size:
-                        print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
-
-            else:
-                if conditioning.shape[0] != batch_size:
-                    print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
-
-        self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
-        # sampling
-        C, H, W = shape
-        size = (batch_size, C, H, W)
-        print(f'Data shape for DDIM sampling is {size}, eta {eta}')
-
-        samples, intermediates = self.ddim_sampling(conditioning, size,
-                                                    callback=callback,
-                                                    img_callback=img_callback,
-                                                    quantize_denoised=quantize_x0,
-                                                    mask=mask, x0=x0,
-                                                    ddim_use_original_steps=False,
-                                                    noise_dropout=noise_dropout,
-                                                    temperature=temperature,
-                                                    score_corrector=score_corrector,
-                                                    corrector_kwargs=corrector_kwargs,
-                                                    x_T=x_T,
-                                                    log_every_t=log_every_t,
-                                                    unconditional_guidance_scale=unconditional_guidance_scale,
-                                                    unconditional_conditioning=unconditional_conditioning,
-                                                    dynamic_threshold=dynamic_threshold,
-                                                    ucg_schedule=ucg_schedule
-                                                    )
-        return samples, intermediates
-
-    @torch.no_grad()
-    def ddim_sampling(self, cond, shape,
-                      x_T=None, ddim_use_original_steps=False,
-                      callback=None, timesteps=None, quantize_denoised=False,
-                      mask=None, x0=None, img_callback=None, log_every_t=100,
-                      temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
-                      unconditional_guidance_scale=1., unconditional_conditioning=None, dynamic_threshold=None,
-                      ucg_schedule=None):
-        device = self.model.betas.device
-        b = shape[0]
-        if x_T is None:
-            img = torch.randn(shape, device=device)
-        else:
-            img = x_T
-
-        if timesteps is None:
-            timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
-        elif timesteps is not None and not ddim_use_original_steps:
-            subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
-            timesteps = self.ddim_timesteps[:subset_end]
-
-        intermediates = {'x_inter': [img], 'pred_x0': [img]}
-        time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
-        total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
-        print(f"Running DDIM Sampling with {total_steps} timesteps")
-
-        iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
-
-        for i, step in enumerate(iterator):
-            index = total_steps - i - 1
-            ts = torch.full((b,), step, device=device, dtype=torch.long)
-
-            if mask is not None:
-                assert x0 is not None
-                img_orig = self.model.q_sample(x0, ts)  # TODO: deterministic forward pass?
-                img = img_orig * mask + (1. - mask) * img
-
-            if ucg_schedule is not None:
-                assert len(ucg_schedule) == len(time_range)
-                unconditional_guidance_scale = ucg_schedule[i]
-
-            outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
-                                      quantize_denoised=quantize_denoised, temperature=temperature,
-                                      noise_dropout=noise_dropout, score_corrector=score_corrector,
-                                      corrector_kwargs=corrector_kwargs,
-                                      unconditional_guidance_scale=unconditional_guidance_scale,
-                                      unconditional_conditioning=unconditional_conditioning,
-                                      dynamic_threshold=dynamic_threshold)
-            img, pred_x0 = outs
-            if callback: callback(i)
-            if img_callback: img_callback(pred_x0, i)
-
-            if index % log_every_t == 0 or index == total_steps - 1:
-                intermediates['x_inter'].append(img)
-                intermediates['pred_x0'].append(pred_x0)
-
-        return img, intermediates
-
-    @torch.no_grad()
-    def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
-                      temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
-                      unconditional_guidance_scale=1., unconditional_conditioning=None,
-                      dynamic_threshold=None):
-        b, *_, device = *x.shape, x.device
-
-        if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
-            model_output = self.model.apply_model(x, t, c)
-        else:
-            x_in = torch.cat([x] * 2)
-            t_in = torch.cat([t] * 2)
-            if isinstance(c, dict):
-                assert isinstance(unconditional_conditioning, dict)
-                c_in = dict()
-                for k in c:
-                    if isinstance(c[k], list):
-                        c_in[k] = [torch.cat([
-                            unconditional_conditioning[k][i],
-                            c[k][i]]) for i in range(len(c[k]))]
-                    else:
-                        c_in[k] = torch.cat([
-                                unconditional_conditioning[k],
-                                c[k]])
-            elif isinstance(c, list):
-                c_in = list()
-                assert isinstance(unconditional_conditioning, list)
-                for i in range(len(c)):
-                    c_in.append(torch.cat([unconditional_conditioning[i], c[i]]))
-            else:
-                c_in = torch.cat([unconditional_conditioning, c])
-            model_uncond, model_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
-            model_output = model_uncond + unconditional_guidance_scale * (model_t - model_uncond)
-
-        if self.model.parameterization == "v":
-            e_t = self.model.predict_eps_from_z_and_v(x, t, model_output)
-        else:
-            e_t = model_output
-
-        if score_corrector is not None:
-            assert self.model.parameterization == "eps", 'not implemented'
-            e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
-
-        alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
-        alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
-        sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
-        sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
-        # select parameters corresponding to the currently considered timestep
-        a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
-        a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
-        sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
-        sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
-
-        # current prediction for x_0
-        if self.model.parameterization != "v":
-            pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
-        else:
-            pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output)
-
-        if quantize_denoised:
-            pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
-
-        if dynamic_threshold is not None:
-            raise NotImplementedError()
-
-        # direction pointing to x_t
-        dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
-        noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
-        if noise_dropout > 0.:
-            noise = torch.nn.functional.dropout(noise, p=noise_dropout)
-        x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
-        return x_prev, pred_x0
-
-    @torch.no_grad()
-    def encode(self, x0, c, t_enc, use_original_steps=False, return_intermediates=None,
-               unconditional_guidance_scale=1.0, unconditional_conditioning=None, callback=None):
-        num_reference_steps = self.ddpm_num_timesteps if use_original_steps else self.ddim_timesteps.shape[0]
-
-        assert t_enc <= num_reference_steps
-        num_steps = t_enc
-
-        if use_original_steps:
-            alphas_next = self.alphas_cumprod[:num_steps]
-            alphas = self.alphas_cumprod_prev[:num_steps]
-        else:
-            alphas_next = self.ddim_alphas[:num_steps]
-            alphas = torch.tensor(self.ddim_alphas_prev[:num_steps])
-
-        x_next = x0
-        intermediates = []
-        inter_steps = []
-        for i in tqdm(range(num_steps), desc='Encoding Image'):
-            t = torch.full((x0.shape[0],), i, device=self.model.device, dtype=torch.long)
-            if unconditional_guidance_scale == 1.:
-                noise_pred = self.model.apply_model(x_next, t, c)
-            else:
-                assert unconditional_conditioning is not None
-                e_t_uncond, noise_pred = torch.chunk(
-                    self.model.apply_model(torch.cat((x_next, x_next)), torch.cat((t, t)),
-                                           torch.cat((unconditional_conditioning, c))), 2)
-                noise_pred = e_t_uncond + unconditional_guidance_scale * (noise_pred - e_t_uncond)
-
-            xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next
-            weighted_noise_pred = alphas_next[i].sqrt() * (
-                    (1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) * noise_pred
-            x_next = xt_weighted + weighted_noise_pred
-            if return_intermediates and i % (
-                    num_steps // return_intermediates) == 0 and i < num_steps - 1:
-                intermediates.append(x_next)
-                inter_steps.append(i)
-            elif return_intermediates and i >= num_steps - 2:
-                intermediates.append(x_next)
-                inter_steps.append(i)
-            if callback: callback(i)
-
-        out = {'x_encoded': x_next, 'intermediate_steps': inter_steps}
-        if return_intermediates:
-            out.update({'intermediates': intermediates})
-        return x_next, out
-
-    @torch.no_grad()
-    def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
-        # fast, but does not allow for exact reconstruction
-        # t serves as an index to gather the correct alphas
-        if use_original_steps:
-            sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
-            sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
-        else:
-            sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
-            sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
-
-        if noise is None:
-            noise = torch.randn_like(x0)
-        return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
-                extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
-
-    @torch.no_grad()
-    def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
-               use_original_steps=False, callback=None):
-
-        timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
-        timesteps = timesteps[:t_start]
-
-        time_range = np.flip(timesteps)
-        total_steps = timesteps.shape[0]
-        print(f"Running DDIM Sampling with {total_steps} timesteps")
-
-        iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
-        x_dec = x_latent
-        for i, step in enumerate(iterator):
-            index = total_steps - i - 1
-            ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
-            x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
-                                          unconditional_guidance_scale=unconditional_guidance_scale,
-                                          unconditional_conditioning=unconditional_conditioning)
-            if callback: callback(i)
-        return x_dec
\ No newline at end of file
diff --git a/ldm/models/diffusion/ddpm.py b/ldm/models/diffusion/ddpm.py
deleted file mode 100644
index ff53bd8a7b84bd4fc2cd1b41c8f6d5819d803d6e..0000000000000000000000000000000000000000
--- a/ldm/models/diffusion/ddpm.py
+++ /dev/null
@@ -1,1796 +0,0 @@
-"""
-wild mixture of
-https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
-https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
-https://github.com/CompVis/taming-transformers
--- merci
-"""
-
-import torch
-import torch.nn as nn
-import numpy as np
-import pytorch_lightning as pl
-from torch.optim.lr_scheduler import LambdaLR
-from einops import rearrange, repeat
-from contextlib import contextmanager, nullcontext
-from functools import partial
-import itertools
-from tqdm import tqdm
-from torchvision.utils import make_grid
-from pytorch_lightning.utilities.distributed import rank_zero_only
-from omegaconf import ListConfig
-
-from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
-from ldm.modules.ema import LitEma
-from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
-from ldm.models.autoencoder import IdentityFirstStage, AutoencoderKL
-from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
-from ldm.models.diffusion.ddim import DDIMSampler
-
-
-__conditioning_keys__ = {'concat': 'c_concat',
-                         'crossattn': 'c_crossattn',
-                         'adm': 'y'}
-
-
-def disabled_train(self, mode=True):
-    """Overwrite model.train with this function to make sure train/eval mode
-    does not change anymore."""
-    return self
-
-
-def uniform_on_device(r1, r2, shape, device):
-    return (r1 - r2) * torch.rand(*shape, device=device) + r2
-
-
-class DDPM(pl.LightningModule):
-    # classic DDPM with Gaussian diffusion, in image space
-    def __init__(self,
-                 unet_config,
-                 timesteps=1000,
-                 beta_schedule="linear",
-                 loss_type="l2",
-                 ckpt_path=None,
-                 ignore_keys=[],
-                 load_only_unet=False,
-                 monitor="val/loss",
-                 use_ema=True,
-                 first_stage_key="image",
-                 image_size=256,
-                 channels=3,
-                 log_every_t=100,
-                 clip_denoised=True,
-                 linear_start=1e-4,
-                 linear_end=2e-2,
-                 cosine_s=8e-3,
-                 given_betas=None,
-                 original_elbo_weight=0.,
-                 v_posterior=0.,  # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
-                 l_simple_weight=1.,
-                 conditioning_key=None,
-                 parameterization="eps",  # all assuming fixed variance schedules
-                 scheduler_config=None,
-                 use_positional_encodings=False,
-                 learn_logvar=False,
-                 logvar_init=0.,
-                 make_it_fit=False,
-                 ucg_training=None,
-                 reset_ema=False,
-                 reset_num_ema_updates=False,
-                 ):
-        super().__init__()
-        assert parameterization in ["eps", "x0", "v"], 'currently only supporting "eps" and "x0" and "v"'
-        self.parameterization = parameterization
-        print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
-        self.cond_stage_model = None
-        self.clip_denoised = clip_denoised
-        self.log_every_t = log_every_t
-        self.first_stage_key = first_stage_key
-        self.image_size = image_size  # try conv?
-        self.channels = channels
-        self.use_positional_encodings = use_positional_encodings
-        self.model = DiffusionWrapper(unet_config, conditioning_key)
-        count_params(self.model, verbose=True)
-        self.use_ema = use_ema
-        if self.use_ema:
-            self.model_ema = LitEma(self.model)
-            print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
-
-        self.use_scheduler = scheduler_config is not None
-        if self.use_scheduler:
-            self.scheduler_config = scheduler_config
-
-        self.v_posterior = v_posterior
-        self.original_elbo_weight = original_elbo_weight
-        self.l_simple_weight = l_simple_weight
-
-        if monitor is not None:
-            self.monitor = monitor
-        self.make_it_fit = make_it_fit
-        if reset_ema: assert exists(ckpt_path)
-        if ckpt_path is not None:
-            self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
-            if reset_ema:
-                assert self.use_ema
-                print(f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint.")
-                self.model_ema = LitEma(self.model)
-        if reset_num_ema_updates:
-            print(" +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ ")
-            assert self.use_ema
-            self.model_ema.reset_num_updates()
-
-        self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
-                               linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
-
-        self.loss_type = loss_type
-
-        self.learn_logvar = learn_logvar
-        self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
-        if self.learn_logvar:
-            self.logvar = nn.Parameter(self.logvar, requires_grad=True)
-
-        self.ucg_training = ucg_training or dict()
-        if self.ucg_training:
-            self.ucg_prng = np.random.RandomState()
-
-    def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
-                          linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
-        if exists(given_betas):
-            betas = given_betas
-        else:
-            betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
-                                       cosine_s=cosine_s)
-        alphas = 1. - betas
-        alphas_cumprod = np.cumprod(alphas, axis=0)
-        alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
-
-        timesteps, = betas.shape
-        self.num_timesteps = int(timesteps)
-        self.linear_start = linear_start
-        self.linear_end = linear_end
-        assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
-
-        to_torch = partial(torch.tensor, dtype=torch.float32)
-
-        self.register_buffer('betas', to_torch(betas))
-        self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
-        self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
-
-        # calculations for diffusion q(x_t | x_{t-1}) and others
-        self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
-        self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
-        self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
-        self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
-        self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
-
-        # calculations for posterior q(x_{t-1} | x_t, x_0)
-        posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
-                1. - alphas_cumprod) + self.v_posterior * betas
-        # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
-        self.register_buffer('posterior_variance', to_torch(posterior_variance))
-        # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
-        self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
-        self.register_buffer('posterior_mean_coef1', to_torch(
-            betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
-        self.register_buffer('posterior_mean_coef2', to_torch(
-            (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
-
-        if self.parameterization == "eps":
-            lvlb_weights = self.betas ** 2 / (
-                    2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
-        elif self.parameterization == "x0":
-            lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
-        elif self.parameterization == "v":
-            lvlb_weights = torch.ones_like(self.betas ** 2 / (
-                    2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod)))
-        else:
-            raise NotImplementedError("mu not supported")
-        # TODO how to choose this term
-        lvlb_weights[0] = lvlb_weights[1]
-        self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
-        assert not torch.isnan(self.lvlb_weights).all()
-
-    @contextmanager
-    def ema_scope(self, context=None):
-        if self.use_ema:
-            self.model_ema.store(self.model.parameters())
-            self.model_ema.copy_to(self.model)
-            if context is not None:
-                print(f"{context}: Switched to EMA weights")
-        try:
-            yield None
-        finally:
-            if self.use_ema:
-                self.model_ema.restore(self.model.parameters())
-                if context is not None:
-                    print(f"{context}: Restored training weights")
-
-    @torch.no_grad()
-    def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
-        sd = torch.load(path, map_location="cpu")
-        if "state_dict" in list(sd.keys()):
-            sd = sd["state_dict"]
-        keys = list(sd.keys())
-        for k in keys:
-            for ik in ignore_keys:
-                if k.startswith(ik):
-                    print("Deleting key {} from state_dict.".format(k))
-                    del sd[k]
-        if self.make_it_fit:
-            n_params = len([name for name, _ in
-                            itertools.chain(self.named_parameters(),
-                                            self.named_buffers())])
-            for name, param in tqdm(
-                    itertools.chain(self.named_parameters(),
-                                    self.named_buffers()),
-                    desc="Fitting old weights to new weights",
-                    total=n_params
-            ):
-                if not name in sd:
-                    continue
-                old_shape = sd[name].shape
-                new_shape = param.shape
-                assert len(old_shape) == len(new_shape)
-                if len(new_shape) > 2:
-                    # we only modify first two axes
-                    assert new_shape[2:] == old_shape[2:]
-                # assumes first axis corresponds to output dim
-                if not new_shape == old_shape:
-                    new_param = param.clone()
-                    old_param = sd[name]
-                    if len(new_shape) == 1:
-                        for i in range(new_param.shape[0]):
-                            new_param[i] = old_param[i % old_shape[0]]
-                    elif len(new_shape) >= 2:
-                        for i in range(new_param.shape[0]):
-                            for j in range(new_param.shape[1]):
-                                new_param[i, j] = old_param[i % old_shape[0], j % old_shape[1]]
-
-                        n_used_old = torch.ones(old_shape[1])
-                        for j in range(new_param.shape[1]):
-                            n_used_old[j % old_shape[1]] += 1
-                        n_used_new = torch.zeros(new_shape[1])
-                        for j in range(new_param.shape[1]):
-                            n_used_new[j] = n_used_old[j % old_shape[1]]
-
-                        n_used_new = n_used_new[None, :]
-                        while len(n_used_new.shape) < len(new_shape):
-                            n_used_new = n_used_new.unsqueeze(-1)
-                        new_param /= n_used_new
-
-                    sd[name] = new_param
-
-        missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
-            sd, strict=False)
-        print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
-        if len(missing) > 0:
-            print(f"Missing Keys:\n {missing}")
-        if len(unexpected) > 0:
-            print(f"\nUnexpected Keys:\n {unexpected}")
-
-    def q_mean_variance(self, x_start, t):
-        """
-        Get the distribution q(x_t | x_0).
-        :param x_start: the [N x C x ...] tensor of noiseless inputs.
-        :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
-        :return: A tuple (mean, variance, log_variance), all of x_start's shape.
-        """
-        mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
-        variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
-        log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
-        return mean, variance, log_variance
-
-    def predict_start_from_noise(self, x_t, t, noise):
-        return (
-                extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
-                extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
-        )
-
-    def predict_start_from_z_and_v(self, x_t, t, v):
-        # self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
-        # self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
-        return (
-                extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t -
-                extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v
-        )
-
-    def predict_eps_from_z_and_v(self, x_t, t, v):
-        return (
-                extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * v +
-                extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * x_t
-        )
-
-    def q_posterior(self, x_start, x_t, t):
-        posterior_mean = (
-                extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
-                extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
-        )
-        posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
-        posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
-        return posterior_mean, posterior_variance, posterior_log_variance_clipped
-
-    def p_mean_variance(self, x, t, clip_denoised: bool):
-        model_out = self.model(x, t)
-        if self.parameterization == "eps":
-            x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
-        elif self.parameterization == "x0":
-            x_recon = model_out
-        if clip_denoised:
-            x_recon.clamp_(-1., 1.)
-
-        model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
-        return model_mean, posterior_variance, posterior_log_variance
-
-    @torch.no_grad()
-    def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
-        b, *_, device = *x.shape, x.device
-        model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
-        noise = noise_like(x.shape, device, repeat_noise)
-        # no noise when t == 0
-        nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
-        return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
-
-    @torch.no_grad()
-    def p_sample_loop(self, shape, return_intermediates=False):
-        device = self.betas.device
-        b = shape[0]
-        img = torch.randn(shape, device=device)
-        intermediates = [img]
-        for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
-            img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
-                                clip_denoised=self.clip_denoised)
-            if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
-                intermediates.append(img)
-        if return_intermediates:
-            return img, intermediates
-        return img
-
-    @torch.no_grad()
-    def sample(self, batch_size=16, return_intermediates=False):
-        image_size = self.image_size
-        channels = self.channels
-        return self.p_sample_loop((batch_size, channels, image_size, image_size),
-                                  return_intermediates=return_intermediates)
-
-    def q_sample(self, x_start, t, noise=None):
-        noise = default(noise, lambda: torch.randn_like(x_start))
-        return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
-                extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
-
-    def get_v(self, x, noise, t):
-        return (
-                extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise -
-                extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x
-        )
-
-    def get_loss(self, pred, target, mean=True):
-        if self.loss_type == 'l1':
-            loss = (target - pred).abs()
-            if mean:
-                loss = loss.mean()
-        elif self.loss_type == 'l2':
-            if mean:
-                loss = torch.nn.functional.mse_loss(target, pred)
-            else:
-                loss = torch.nn.functional.mse_loss(target, pred, reduction='none')
-        else:
-            raise NotImplementedError("unknown loss type '{loss_type}'")
-
-        return loss
-
-    def p_losses(self, x_start, t, noise=None):
-        noise = default(noise, lambda: torch.randn_like(x_start))
-        x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
-        model_out = self.model(x_noisy, t)
-
-        loss_dict = {}
-        if self.parameterization == "eps":
-            target = noise
-        elif self.parameterization == "x0":
-            target = x_start
-        elif self.parameterization == "v":
-            target = self.get_v(x_start, noise, t)
-        else:
-            raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported")
-
-        loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3])
-
-        log_prefix = 'train' if self.training else 'val'
-
-        loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()})
-        loss_simple = loss.mean() * self.l_simple_weight
-
-        loss_vlb = (self.lvlb_weights[t] * loss).mean()
-        loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb})
-
-        loss = loss_simple + self.original_elbo_weight * loss_vlb
-
-        loss_dict.update({f'{log_prefix}/loss': loss})
-
-        return loss, loss_dict
-
-    def forward(self, x, *args, **kwargs):
-        # b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size
-        # assert h == img_size and w == img_size, f'height and width of image must be {img_size}'
-        t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
-        return self.p_losses(x, t, *args, **kwargs)
-
-    def get_input(self, batch, k):
-        x = batch[k]
-        if len(x.shape) == 3:
-            x = x[..., None]
-        x = rearrange(x, 'b h w c -> b c h w')
-        x = x.to(memory_format=torch.contiguous_format).float()
-        return x
-
-    def shared_step(self, batch):
-        x = self.get_input(batch, self.first_stage_key)
-        loss, loss_dict = self(x)
-        return loss, loss_dict
-
-    def training_step(self, batch, batch_idx):
-        for k in self.ucg_training:
-            p = self.ucg_training[k]["p"]
-            val = self.ucg_training[k]["val"]
-            if val is None:
-                val = ""
-            for i in range(len(batch[k])):
-                if self.ucg_prng.choice(2, p=[1 - p, p]):
-                    batch[k][i] = val
-
-        loss, loss_dict = self.shared_step(batch)
-
-        self.log_dict(loss_dict, prog_bar=True,
-                      logger=True, on_step=True, on_epoch=True)
-
-        self.log("global_step", self.global_step,
-                 prog_bar=True, logger=True, on_step=True, on_epoch=False)
-
-        if self.use_scheduler:
-            lr = self.optimizers().param_groups[0]['lr']
-            self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False)
-
-        return loss
-
-    @torch.no_grad()
-    def validation_step(self, batch, batch_idx):
-        _, loss_dict_no_ema = self.shared_step(batch)
-        with self.ema_scope():
-            _, loss_dict_ema = self.shared_step(batch)
-            loss_dict_ema = {key + '_ema': loss_dict_ema[key] for key in loss_dict_ema}
-        self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
-        self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True)
-
-    def on_train_batch_end(self, *args, **kwargs):
-        if self.use_ema:
-            self.model_ema(self.model)
-
-    def _get_rows_from_list(self, samples):
-        n_imgs_per_row = len(samples)
-        denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
-        denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
-        denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
-        return denoise_grid
-
-    @torch.no_grad()
-    def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
-        log = dict()
-        x = self.get_input(batch, self.first_stage_key)
-        N = min(x.shape[0], N)
-        n_row = min(x.shape[0], n_row)
-        x = x.to(self.device)[:N]
-        log["inputs"] = x
-
-        # get diffusion row
-        diffusion_row = list()
-        x_start = x[:n_row]
-
-        for t in range(self.num_timesteps):
-            if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
-                t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
-                t = t.to(self.device).long()
-                noise = torch.randn_like(x_start)
-                x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
-                diffusion_row.append(x_noisy)
-
-        log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
-
-        if sample:
-            # get denoise row
-            with self.ema_scope("Plotting"):
-                samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
-
-            log["samples"] = samples
-            log["denoise_row"] = self._get_rows_from_list(denoise_row)
-
-        if return_keys:
-            if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
-                return log
-            else:
-                return {key: log[key] for key in return_keys}
-        return log
-
-    def configure_optimizers(self):
-        lr = self.learning_rate
-        params = list(self.model.parameters())
-        if self.learn_logvar:
-            params = params + [self.logvar]
-        opt = torch.optim.AdamW(params, lr=lr)
-        return opt
-
-
-class LatentDiffusion(DDPM):
-    """main class"""
-
-    def __init__(self,
-                 first_stage_config,
-                 cond_stage_config,
-                 num_timesteps_cond=None,
-                 cond_stage_key="image",
-                 cond_stage_trainable=False,
-                 concat_mode=True,
-                 cond_stage_forward=None,
-                 conditioning_key=None,
-                 scale_factor=1.0,
-                 scale_by_std=False,
-                 force_null_conditioning=False,
-                 *args, **kwargs):
-        self.force_null_conditioning = force_null_conditioning
-        self.num_timesteps_cond = default(num_timesteps_cond, 1)
-        self.scale_by_std = scale_by_std
-        assert self.num_timesteps_cond <= kwargs['timesteps']
-        # for backwards compatibility after implementation of DiffusionWrapper
-        if conditioning_key is None:
-            conditioning_key = 'concat' if concat_mode else 'crossattn'
-        if cond_stage_config == '__is_unconditional__' and not self.force_null_conditioning:
-            conditioning_key = None
-        ckpt_path = kwargs.pop("ckpt_path", None)
-        reset_ema = kwargs.pop("reset_ema", False)
-        reset_num_ema_updates = kwargs.pop("reset_num_ema_updates", False)
-        ignore_keys = kwargs.pop("ignore_keys", [])
-        super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
-        self.concat_mode = concat_mode
-        self.cond_stage_trainable = cond_stage_trainable
-        self.cond_stage_key = cond_stage_key
-        try:
-            self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
-        except:
-            self.num_downs = 0
-        if not scale_by_std:
-            self.scale_factor = scale_factor
-        else:
-            self.register_buffer('scale_factor', torch.tensor(scale_factor))
-        self.instantiate_first_stage(first_stage_config)
-        self.instantiate_cond_stage(cond_stage_config)
-        self.cond_stage_forward = cond_stage_forward
-        self.clip_denoised = False
-        self.bbox_tokenizer = None
-
-        self.restarted_from_ckpt = False
-        if ckpt_path is not None:
-            self.init_from_ckpt(ckpt_path, ignore_keys)
-            self.restarted_from_ckpt = True
-            if reset_ema:
-                assert self.use_ema
-                print(
-                    f"Resetting ema to pure model weights. This is useful when restoring from an ema-only checkpoint.")
-                self.model_ema = LitEma(self.model)
-        if reset_num_ema_updates:
-            print(" +++++++++++ WARNING: RESETTING NUM_EMA UPDATES TO ZERO +++++++++++ ")
-            assert self.use_ema
-            self.model_ema.reset_num_updates()
-
-    def make_cond_schedule(self, ):
-        self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
-        ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
-        self.cond_ids[:self.num_timesteps_cond] = ids
-
-    @rank_zero_only
-    @torch.no_grad()
-    def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
-        # only for very first batch
-        if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt:
-            assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously'
-            # set rescale weight to 1./std of encodings
-            print("### USING STD-RESCALING ###")
-            x = super().get_input(batch, self.first_stage_key)
-            x = x.to(self.device)
-            encoder_posterior = self.encode_first_stage(x)
-            z = self.get_first_stage_encoding(encoder_posterior).detach()
-            del self.scale_factor
-            self.register_buffer('scale_factor', 1. / z.flatten().std())
-            print(f"setting self.scale_factor to {self.scale_factor}")
-            print("### USING STD-RESCALING ###")
-
-    def register_schedule(self,
-                          given_betas=None, beta_schedule="linear", timesteps=1000,
-                          linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
-        super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s)
-
-        self.shorten_cond_schedule = self.num_timesteps_cond > 1
-        if self.shorten_cond_schedule:
-            self.make_cond_schedule()
-
-    def instantiate_first_stage(self, config):
-        model = instantiate_from_config(config)
-        self.first_stage_model = model.eval()
-        self.first_stage_model.train = disabled_train
-        for param in self.first_stage_model.parameters():
-            param.requires_grad = False
-
-    def instantiate_cond_stage(self, config):
-        if not self.cond_stage_trainable:
-            if config == "__is_first_stage__":
-                print("Using first stage also as cond stage.")
-                self.cond_stage_model = self.first_stage_model
-            elif config == "__is_unconditional__":
-                print(f"Training {self.__class__.__name__} as an unconditional model.")
-                self.cond_stage_model = None
-                # self.be_unconditional = True
-            else:
-                model = instantiate_from_config(config)
-                self.cond_stage_model = model.eval()
-                self.cond_stage_model.train = disabled_train
-                for param in self.cond_stage_model.parameters():
-                    param.requires_grad = False
-        else:
-            assert config != '__is_first_stage__'
-            assert config != '__is_unconditional__'
-            model = instantiate_from_config(config)
-            self.cond_stage_model = model
-
-    def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False):
-        denoise_row = []
-        for zd in tqdm(samples, desc=desc):
-            denoise_row.append(self.decode_first_stage(zd.to(self.device),
-                                                       force_not_quantize=force_no_decoder_quantization))
-        n_imgs_per_row = len(denoise_row)
-        denoise_row = torch.stack(denoise_row)  # n_log_step, n_row, C, H, W
-        denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
-        denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
-        denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
-        return denoise_grid
-
-    def get_first_stage_encoding(self, encoder_posterior):
-        if isinstance(encoder_posterior, DiagonalGaussianDistribution):
-            z = encoder_posterior.sample()
-        elif isinstance(encoder_posterior, torch.Tensor):
-            z = encoder_posterior
-        else:
-            raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
-        return self.scale_factor * z
-
-    def get_learned_conditioning(self, c):
-        if self.cond_stage_forward is None:
-            if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
-                c = self.cond_stage_model.encode(c)
-                if isinstance(c, DiagonalGaussianDistribution):
-                    c = c.mode()
-            else:
-                c = self.cond_stage_model(c)
-        else:
-            assert hasattr(self.cond_stage_model, self.cond_stage_forward)
-            c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
-        return c
-
-    def meshgrid(self, h, w):
-        y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1)
-        x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1)
-
-        arr = torch.cat([y, x], dim=-1)
-        return arr
-
-    def delta_border(self, h, w):
-        """
-        :param h: height
-        :param w: width
-        :return: normalized distance to image border,
-         wtith min distance = 0 at border and max dist = 0.5 at image center
-        """
-        lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2)
-        arr = self.meshgrid(h, w) / lower_right_corner
-        dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0]
-        dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0]
-        edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0]
-        return edge_dist
-
-    def get_weighting(self, h, w, Ly, Lx, device):
-        weighting = self.delta_border(h, w)
-        weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"],
-                               self.split_input_params["clip_max_weight"], )
-        weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device)
-
-        if self.split_input_params["tie_braker"]:
-            L_weighting = self.delta_border(Ly, Lx)
-            L_weighting = torch.clip(L_weighting,
-                                     self.split_input_params["clip_min_tie_weight"],
-                                     self.split_input_params["clip_max_tie_weight"])
-
-            L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device)
-            weighting = weighting * L_weighting
-        return weighting
-
-    def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1):  # todo load once not every time, shorten code
-        """
-        :param x: img of size (bs, c, h, w)
-        :return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1])
-        """
-        bs, nc, h, w = x.shape
-
-        # number of crops in image
-        Ly = (h - kernel_size[0]) // stride[0] + 1
-        Lx = (w - kernel_size[1]) // stride[1] + 1
-
-        if uf == 1 and df == 1:
-            fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
-            unfold = torch.nn.Unfold(**fold_params)
-
-            fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params)
-
-            weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype)
-            normalization = fold(weighting).view(1, 1, h, w)  # normalizes the overlap
-            weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx))
-
-        elif uf > 1 and df == 1:
-            fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
-            unfold = torch.nn.Unfold(**fold_params)
-
-            fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf),
-                                dilation=1, padding=0,
-                                stride=(stride[0] * uf, stride[1] * uf))
-            fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2)
-
-            weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype)
-            normalization = fold(weighting).view(1, 1, h * uf, w * uf)  # normalizes the overlap
-            weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx))
-
-        elif df > 1 and uf == 1:
-            fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride)
-            unfold = torch.nn.Unfold(**fold_params)
-
-            fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df),
-                                dilation=1, padding=0,
-                                stride=(stride[0] // df, stride[1] // df))
-            fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2)
-
-            weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype)
-            normalization = fold(weighting).view(1, 1, h // df, w // df)  # normalizes the overlap
-            weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx))
-
-        else:
-            raise NotImplementedError
-
-        return fold, unfold, normalization, weighting
-
-    @torch.no_grad()
-    def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False,
-                  cond_key=None, return_original_cond=False, bs=None, return_x=False):
-        x = super().get_input(batch, k)
-        if bs is not None:
-            x = x[:bs]
-        x = x.to(self.device)
-        encoder_posterior = self.encode_first_stage(x)
-        z = self.get_first_stage_encoding(encoder_posterior).detach()
-
-        if self.model.conditioning_key is not None and not self.force_null_conditioning:
-            if cond_key is None:
-                cond_key = self.cond_stage_key
-            if cond_key != self.first_stage_key:
-                if cond_key in ['caption', 'coordinates_bbox', "txt"]:
-                    xc = batch[cond_key]
-                elif cond_key in ['class_label', 'cls']:
-                    xc = batch
-                else:
-                    xc = super().get_input(batch, cond_key).to(self.device)
-            else:
-                xc = x
-            if not self.cond_stage_trainable or force_c_encode:
-                if isinstance(xc, dict) or isinstance(xc, list):
-                    c = self.get_learned_conditioning(xc)
-                else:
-                    c = self.get_learned_conditioning(xc.to(self.device))
-            else:
-                c = xc
-            if bs is not None:
-                c = c[:bs]
-
-            if self.use_positional_encodings:
-                pos_x, pos_y = self.compute_latent_shifts(batch)
-                ckey = __conditioning_keys__[self.model.conditioning_key]
-                c = {ckey: c, 'pos_x': pos_x, 'pos_y': pos_y}
-
-        else:
-            c = None
-            xc = None
-            if self.use_positional_encodings:
-                pos_x, pos_y = self.compute_latent_shifts(batch)
-                c = {'pos_x': pos_x, 'pos_y': pos_y}
-        out = [z, c]
-        if return_first_stage_outputs:
-            xrec = self.decode_first_stage(z)
-            out.extend([x, xrec])
-        if return_x:
-            out.extend([x])
-        if return_original_cond:
-            out.append(xc)
-        return out
-
-    @torch.no_grad()
-    def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
-        if predict_cids:
-            if z.dim() == 4:
-                z = torch.argmax(z.exp(), dim=1).long()
-            z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
-            z = rearrange(z, 'b h w c -> b c h w').contiguous()
-
-        z = 1. / self.scale_factor * z
-        return self.first_stage_model.decode(z)
-
-    @torch.no_grad()
-    def encode_first_stage(self, x):
-        return self.first_stage_model.encode(x)
-
-    def shared_step(self, batch, **kwargs):
-        x, c = self.get_input(batch, self.first_stage_key)
-        loss = self(x, c)
-        return loss
-
-    def forward(self, x, c, *args, **kwargs):
-        t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
-        if self.model.conditioning_key is not None:
-            assert c is not None
-            if self.cond_stage_trainable:
-                c = self.get_learned_conditioning(c)
-            if self.shorten_cond_schedule:  # TODO: drop this option
-                tc = self.cond_ids[t].to(self.device)
-                c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float()))
-        return self.p_losses(x, c, t, *args, **kwargs)
-
-    def apply_model(self, x_noisy, t, cond, return_ids=False):
-        if isinstance(cond, dict):
-            # hybrid case, cond is expected to be a dict
-            pass
-        else:
-            if not isinstance(cond, list):
-                cond = [cond]
-            key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
-            cond = {key: cond}
-
-        x_recon = self.model(x_noisy, t, **cond)
-
-        if isinstance(x_recon, tuple) and not return_ids:
-            return x_recon[0]
-        else:
-            return x_recon
-
-    def _predict_eps_from_xstart(self, x_t, t, pred_xstart):
-        return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \
-               extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape)
-
-    def _prior_bpd(self, x_start):
-        """
-        Get the prior KL term for the variational lower-bound, measured in
-        bits-per-dim.
-        This term can't be optimized, as it only depends on the encoder.
-        :param x_start: the [N x C x ...] tensor of inputs.
-        :return: a batch of [N] KL values (in bits), one per batch element.
-        """
-        batch_size = x_start.shape[0]
-        t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device)
-        qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t)
-        kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0)
-        return mean_flat(kl_prior) / np.log(2.0)
-
-    def p_losses(self, x_start, cond, t, noise=None):
-        noise = default(noise, lambda: torch.randn_like(x_start))
-        x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
-        model_output = self.apply_model(x_noisy, t, cond)
-
-        loss_dict = {}
-        prefix = 'train' if self.training else 'val'
-
-        if self.parameterization == "x0":
-            target = x_start
-        elif self.parameterization == "eps":
-            target = noise
-        elif self.parameterization == "v":
-            target = self.get_v(x_start, noise, t)
-        else:
-            raise NotImplementedError()
-
-        loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3])
-        loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()})
-
-        logvar_t = self.logvar[t].to(self.device)
-        loss = loss_simple / torch.exp(logvar_t) + logvar_t
-        # loss = loss_simple / torch.exp(self.logvar) + self.logvar
-        if self.learn_logvar:
-            loss_dict.update({f'{prefix}/loss_gamma': loss.mean()})
-            loss_dict.update({'logvar': self.logvar.data.mean()})
-
-        loss = self.l_simple_weight * loss.mean()
-
-        loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3))
-        loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
-        loss_dict.update({f'{prefix}/loss_vlb': loss_vlb})
-        loss += (self.original_elbo_weight * loss_vlb)
-        loss_dict.update({f'{prefix}/loss': loss})
-
-        return loss, loss_dict
-
-    def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False,
-                        return_x0=False, score_corrector=None, corrector_kwargs=None):
-        t_in = t
-        model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids)
-
-        if score_corrector is not None:
-            assert self.parameterization == "eps"
-            model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
-
-        if return_codebook_ids:
-            model_out, logits = model_out
-
-        if self.parameterization == "eps":
-            x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
-        elif self.parameterization == "x0":
-            x_recon = model_out
-        else:
-            raise NotImplementedError()
-
-        if clip_denoised:
-            x_recon.clamp_(-1., 1.)
-        if quantize_denoised:
-            x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon)
-        model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
-        if return_codebook_ids:
-            return model_mean, posterior_variance, posterior_log_variance, logits
-        elif return_x0:
-            return model_mean, posterior_variance, posterior_log_variance, x_recon
-        else:
-            return model_mean, posterior_variance, posterior_log_variance
-
-    @torch.no_grad()
-    def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False,
-                 return_codebook_ids=False, quantize_denoised=False, return_x0=False,
-                 temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None):
-        b, *_, device = *x.shape, x.device
-        outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
-                                       return_codebook_ids=return_codebook_ids,
-                                       quantize_denoised=quantize_denoised,
-                                       return_x0=return_x0,
-                                       score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
-        if return_codebook_ids:
-            raise DeprecationWarning("Support dropped.")
-            model_mean, _, model_log_variance, logits = outputs
-        elif return_x0:
-            model_mean, _, model_log_variance, x0 = outputs
-        else:
-            model_mean, _, model_log_variance = outputs
-
-        noise = noise_like(x.shape, device, repeat_noise) * temperature
-        if noise_dropout > 0.:
-            noise = torch.nn.functional.dropout(noise, p=noise_dropout)
-        # no noise when t == 0
-        nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
-
-        if return_codebook_ids:
-            return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1)
-        if return_x0:
-            return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
-        else:
-            return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
-
-    @torch.no_grad()
-    def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False,
-                              img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0.,
-                              score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None,
-                              log_every_t=None):
-        if not log_every_t:
-            log_every_t = self.log_every_t
-        timesteps = self.num_timesteps
-        if batch_size is not None:
-            b = batch_size if batch_size is not None else shape[0]
-            shape = [batch_size] + list(shape)
-        else:
-            b = batch_size = shape[0]
-        if x_T is None:
-            img = torch.randn(shape, device=self.device)
-        else:
-            img = x_T
-        intermediates = []
-        if cond is not None:
-            if isinstance(cond, dict):
-                cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
-                list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
-            else:
-                cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
-
-        if start_T is not None:
-            timesteps = min(timesteps, start_T)
-        iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation',
-                        total=timesteps) if verbose else reversed(
-            range(0, timesteps))
-        if type(temperature) == float:
-            temperature = [temperature] * timesteps
-
-        for i in iterator:
-            ts = torch.full((b,), i, device=self.device, dtype=torch.long)
-            if self.shorten_cond_schedule:
-                assert self.model.conditioning_key != 'hybrid'
-                tc = self.cond_ids[ts].to(cond.device)
-                cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
-
-            img, x0_partial = self.p_sample(img, cond, ts,
-                                            clip_denoised=self.clip_denoised,
-                                            quantize_denoised=quantize_denoised, return_x0=True,
-                                            temperature=temperature[i], noise_dropout=noise_dropout,
-                                            score_corrector=score_corrector, corrector_kwargs=corrector_kwargs)
-            if mask is not None:
-                assert x0 is not None
-                img_orig = self.q_sample(x0, ts)
-                img = img_orig * mask + (1. - mask) * img
-
-            if i % log_every_t == 0 or i == timesteps - 1:
-                intermediates.append(x0_partial)
-            if callback: callback(i)
-            if img_callback: img_callback(img, i)
-        return img, intermediates
-
-    @torch.no_grad()
-    def p_sample_loop(self, cond, shape, return_intermediates=False,
-                      x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False,
-                      mask=None, x0=None, img_callback=None, start_T=None,
-                      log_every_t=None):
-
-        if not log_every_t:
-            log_every_t = self.log_every_t
-        device = self.betas.device
-        b = shape[0]
-        if x_T is None:
-            img = torch.randn(shape, device=device)
-        else:
-            img = x_T
-
-        intermediates = [img]
-        if timesteps is None:
-            timesteps = self.num_timesteps
-
-        if start_T is not None:
-            timesteps = min(timesteps, start_T)
-        iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
-            range(0, timesteps))
-
-        if mask is not None:
-            assert x0 is not None
-            assert x0.shape[2:3] == mask.shape[2:3]  # spatial size has to match
-
-        for i in iterator:
-            ts = torch.full((b,), i, device=device, dtype=torch.long)
-            if self.shorten_cond_schedule:
-                assert self.model.conditioning_key != 'hybrid'
-                tc = self.cond_ids[ts].to(cond.device)
-                cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
-
-            img = self.p_sample(img, cond, ts,
-                                clip_denoised=self.clip_denoised,
-                                quantize_denoised=quantize_denoised)
-            if mask is not None:
-                img_orig = self.q_sample(x0, ts)
-                img = img_orig * mask + (1. - mask) * img
-
-            if i % log_every_t == 0 or i == timesteps - 1:
-                intermediates.append(img)
-            if callback: callback(i)
-            if img_callback: img_callback(img, i)
-
-        if return_intermediates:
-            return img, intermediates
-        return img
-
-    @torch.no_grad()
-    def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
-               verbose=True, timesteps=None, quantize_denoised=False,
-               mask=None, x0=None, shape=None, **kwargs):
-        if shape is None:
-            shape = (batch_size, self.channels, self.image_size, self.image_size)
-        if cond is not None:
-            if isinstance(cond, dict):
-                cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else
-                list(map(lambda x: x[:batch_size], cond[key])) for key in cond}
-            else:
-                cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size]
-        return self.p_sample_loop(cond,
-                                  shape,
-                                  return_intermediates=return_intermediates, x_T=x_T,
-                                  verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised,
-                                  mask=mask, x0=x0)
-
-    @torch.no_grad()
-    def sample_log(self, cond, batch_size, ddim, ddim_steps, **kwargs):
-        if ddim:
-            ddim_sampler = DDIMSampler(self)
-            shape = (self.channels, self.image_size, self.image_size)
-            samples, intermediates = ddim_sampler.sample(ddim_steps, batch_size,
-                                                         shape, cond, verbose=False, **kwargs)
-
-        else:
-            samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
-                                                 return_intermediates=True, **kwargs)
-
-        return samples, intermediates
-
-    @torch.no_grad()
-    def get_unconditional_conditioning(self, batch_size, null_label=None):
-        if null_label is not None:
-            xc = null_label
-            if isinstance(xc, ListConfig):
-                xc = list(xc)
-            if isinstance(xc, dict) or isinstance(xc, list):
-                c = self.get_learned_conditioning(xc)
-            else:
-                if hasattr(xc, "to"):
-                    xc = xc.to(self.device)
-                c = self.get_learned_conditioning(xc)
-        else:
-            if self.cond_stage_key in ["class_label", "cls"]:
-                xc = self.cond_stage_model.get_unconditional_conditioning(batch_size, device=self.device)
-                return self.get_learned_conditioning(xc)
-            else:
-                raise NotImplementedError("todo")
-        if isinstance(c, list):  # in case the encoder gives us a list
-            for i in range(len(c)):
-                c[i] = repeat(c[i], '1 ... -> b ...', b=batch_size).to(self.device)
-        else:
-            c = repeat(c, '1 ... -> b ...', b=batch_size).to(self.device)
-        return c
-
-    @torch.no_grad()
-    def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=50, ddim_eta=0., return_keys=None,
-                   quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
-                   plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
-                   use_ema_scope=True,
-                   **kwargs):
-        ema_scope = self.ema_scope if use_ema_scope else nullcontext
-        use_ddim = ddim_steps is not None
-
-        log = dict()
-        z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
-                                           return_first_stage_outputs=True,
-                                           force_c_encode=True,
-                                           return_original_cond=True,
-                                           bs=N)
-        N = min(x.shape[0], N)
-        n_row = min(x.shape[0], n_row)
-        log["inputs"] = x
-        log["reconstruction"] = xrec
-        if self.model.conditioning_key is not None:
-            if hasattr(self.cond_stage_model, "decode"):
-                xc = self.cond_stage_model.decode(c)
-                log["conditioning"] = xc
-            elif self.cond_stage_key in ["caption", "txt"]:
-                xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
-                log["conditioning"] = xc
-            elif self.cond_stage_key in ['class_label', "cls"]:
-                try:
-                    xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
-                    log['conditioning'] = xc
-                except KeyError:
-                    # probably no "human_label" in batch
-                    pass
-            elif isimage(xc):
-                log["conditioning"] = xc
-            if ismap(xc):
-                log["original_conditioning"] = self.to_rgb(xc)
-
-        if plot_diffusion_rows:
-            # get diffusion row
-            diffusion_row = list()
-            z_start = z[:n_row]
-            for t in range(self.num_timesteps):
-                if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
-                    t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
-                    t = t.to(self.device).long()
-                    noise = torch.randn_like(z_start)
-                    z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
-                    diffusion_row.append(self.decode_first_stage(z_noisy))
-
-            diffusion_row = torch.stack(diffusion_row)  # n_log_step, n_row, C, H, W
-            diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
-            diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
-            diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
-            log["diffusion_row"] = diffusion_grid
-
-        if sample:
-            # get denoise row
-            with ema_scope("Sampling"):
-                samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
-                                                         ddim_steps=ddim_steps, eta=ddim_eta)
-                # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
-            x_samples = self.decode_first_stage(samples)
-            log["samples"] = x_samples
-            if plot_denoise_rows:
-                denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
-                log["denoise_row"] = denoise_grid
-
-            if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance(
-                    self.first_stage_model, IdentityFirstStage):
-                # also display when quantizing x0 while sampling
-                with ema_scope("Plotting Quantized Denoised"):
-                    samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
-                                                             ddim_steps=ddim_steps, eta=ddim_eta,
-                                                             quantize_denoised=True)
-                    # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
-                    #                                      quantize_denoised=True)
-                x_samples = self.decode_first_stage(samples.to(self.device))
-                log["samples_x0_quantized"] = x_samples
-
-        if unconditional_guidance_scale > 1.0:
-            uc = self.get_unconditional_conditioning(N, unconditional_guidance_label)
-            if self.model.conditioning_key == "crossattn-adm":
-                uc = {"c_crossattn": [uc], "c_adm": c["c_adm"]}
-            with ema_scope("Sampling with classifier-free guidance"):
-                samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
-                                                 ddim_steps=ddim_steps, eta=ddim_eta,
-                                                 unconditional_guidance_scale=unconditional_guidance_scale,
-                                                 unconditional_conditioning=uc,
-                                                 )
-                x_samples_cfg = self.decode_first_stage(samples_cfg)
-                log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
-
-        if inpaint:
-            # make a simple center square
-            b, h, w = z.shape[0], z.shape[2], z.shape[3]
-            mask = torch.ones(N, h, w).to(self.device)
-            # zeros will be filled in
-            mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
-            mask = mask[:, None, ...]
-            with ema_scope("Plotting Inpaint"):
-                samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, eta=ddim_eta,
-                                             ddim_steps=ddim_steps, x0=z[:N], mask=mask)
-            x_samples = self.decode_first_stage(samples.to(self.device))
-            log["samples_inpainting"] = x_samples
-            log["mask"] = mask
-
-            # outpaint
-            mask = 1. - mask
-            with ema_scope("Plotting Outpaint"):
-                samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim, eta=ddim_eta,
-                                             ddim_steps=ddim_steps, x0=z[:N], mask=mask)
-            x_samples = self.decode_first_stage(samples.to(self.device))
-            log["samples_outpainting"] = x_samples
-
-        if plot_progressive_rows:
-            with ema_scope("Plotting Progressives"):
-                img, progressives = self.progressive_denoising(c,
-                                                               shape=(self.channels, self.image_size, self.image_size),
-                                                               batch_size=N)
-            prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
-            log["progressive_row"] = prog_row
-
-        if return_keys:
-            if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
-                return log
-            else:
-                return {key: log[key] for key in return_keys}
-        return log
-
-    def configure_optimizers(self):
-        lr = self.learning_rate
-        params = list(self.model.parameters())
-        if self.cond_stage_trainable:
-            print(f"{self.__class__.__name__}: Also optimizing conditioner params!")
-            params = params + list(self.cond_stage_model.parameters())
-        if self.learn_logvar:
-            print('Diffusion model optimizing logvar')
-            params.append(self.logvar)
-        opt = torch.optim.AdamW(params, lr=lr)
-        if self.use_scheduler:
-            assert 'target' in self.scheduler_config
-            scheduler = instantiate_from_config(self.scheduler_config)
-
-            print("Setting up LambdaLR scheduler...")
-            scheduler = [
-                {
-                    'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule),
-                    'interval': 'step',
-                    'frequency': 1
-                }]
-            return [opt], scheduler
-        return opt
-
-    @torch.no_grad()
-    def to_rgb(self, x):
-        x = x.float()
-        if not hasattr(self, "colorize"):
-            self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x)
-        x = nn.functional.conv2d(x, weight=self.colorize)
-        x = 2. * (x - x.min()) / (x.max() - x.min()) - 1.
-        return x
-
-
-class DiffusionWrapper(pl.LightningModule):
-    def __init__(self, diff_model_config, conditioning_key):
-        super().__init__()
-        self.sequential_cross_attn = diff_model_config.pop("sequential_crossattn", False)
-        self.diffusion_model = instantiate_from_config(diff_model_config)
-        self.conditioning_key = conditioning_key
-        assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm', 'hybrid-adm', 'crossattn-adm']
-
-    def forward(self, x, t, c_concat: list = None, c_crossattn: list = None, c_adm=None):
-        if self.conditioning_key is None:
-            out = self.diffusion_model(x, t)
-        elif self.conditioning_key == 'concat':
-            xc = torch.cat([x] + c_concat, dim=1)
-            out = self.diffusion_model(xc, t)
-        elif self.conditioning_key == 'crossattn':
-            if not self.sequential_cross_attn:
-                cc = torch.cat(c_crossattn, 1)
-            else:
-                cc = c_crossattn
-            out = self.diffusion_model(x, t, context=cc)
-        elif self.conditioning_key == 'hybrid':
-            xc = torch.cat([x] + c_concat, dim=1)
-            cc = torch.cat(c_crossattn, 1)
-            out = self.diffusion_model(xc, t, context=cc)
-        elif self.conditioning_key == 'hybrid-adm':
-            assert c_adm is not None
-            xc = torch.cat([x] + c_concat, dim=1)
-            cc = torch.cat(c_crossattn, 1)
-            out = self.diffusion_model(xc, t, context=cc, y=c_adm)
-        elif self.conditioning_key == 'crossattn-adm':
-            assert c_adm is not None
-            cc = torch.cat(c_crossattn, 1)
-            out = self.diffusion_model(x, t, context=cc, y=c_adm)
-        elif self.conditioning_key == 'adm':
-            cc = c_crossattn[0]
-            out = self.diffusion_model(x, t, y=cc)
-        else:
-            raise NotImplementedError()
-
-        return out
-
-
-class LatentUpscaleDiffusion(LatentDiffusion):
-    def __init__(self, *args, low_scale_config, low_scale_key="LR", noise_level_key=None, **kwargs):
-        super().__init__(*args, **kwargs)
-        # assumes that neither the cond_stage nor the low_scale_model contain trainable params
-        assert not self.cond_stage_trainable
-        self.instantiate_low_stage(low_scale_config)
-        self.low_scale_key = low_scale_key
-        self.noise_level_key = noise_level_key
-
-    def instantiate_low_stage(self, config):
-        model = instantiate_from_config(config)
-        self.low_scale_model = model.eval()
-        self.low_scale_model.train = disabled_train
-        for param in self.low_scale_model.parameters():
-            param.requires_grad = False
-
-    @torch.no_grad()
-    def get_input(self, batch, k, cond_key=None, bs=None, log_mode=False):
-        if not log_mode:
-            z, c = super().get_input(batch, k, force_c_encode=True, bs=bs)
-        else:
-            z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
-                                                  force_c_encode=True, return_original_cond=True, bs=bs)
-        x_low = batch[self.low_scale_key][:bs]
-        x_low = rearrange(x_low, 'b h w c -> b c h w')
-        x_low = x_low.to(memory_format=torch.contiguous_format).float()
-        zx, noise_level = self.low_scale_model(x_low)
-        if self.noise_level_key is not None:
-            # get noise level from batch instead, e.g. when extracting a custom noise level for bsr
-            raise NotImplementedError('TODO')
-
-        all_conds = {"c_concat": [zx], "c_crossattn": [c], "c_adm": noise_level}
-        if log_mode:
-            # TODO: maybe disable if too expensive
-            x_low_rec = self.low_scale_model.decode(zx)
-            return z, all_conds, x, xrec, xc, x_low, x_low_rec, noise_level
-        return z, all_conds
-
-    @torch.no_grad()
-    def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
-                   plot_denoise_rows=False, plot_progressive_rows=True, plot_diffusion_rows=True,
-                   unconditional_guidance_scale=1., unconditional_guidance_label=None, use_ema_scope=True,
-                   **kwargs):
-        ema_scope = self.ema_scope if use_ema_scope else nullcontext
-        use_ddim = ddim_steps is not None
-
-        log = dict()
-        z, c, x, xrec, xc, x_low, x_low_rec, noise_level = self.get_input(batch, self.first_stage_key, bs=N,
-                                                                          log_mode=True)
-        N = min(x.shape[0], N)
-        n_row = min(x.shape[0], n_row)
-        log["inputs"] = x
-        log["reconstruction"] = xrec
-        log["x_lr"] = x_low
-        log[f"x_lr_rec_@noise_levels{'-'.join(map(lambda x: str(x), list(noise_level.cpu().numpy())))}"] = x_low_rec
-        if self.model.conditioning_key is not None:
-            if hasattr(self.cond_stage_model, "decode"):
-                xc = self.cond_stage_model.decode(c)
-                log["conditioning"] = xc
-            elif self.cond_stage_key in ["caption", "txt"]:
-                xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
-                log["conditioning"] = xc
-            elif self.cond_stage_key in ['class_label', 'cls']:
-                xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
-                log['conditioning'] = xc
-            elif isimage(xc):
-                log["conditioning"] = xc
-            if ismap(xc):
-                log["original_conditioning"] = self.to_rgb(xc)
-
-        if plot_diffusion_rows:
-            # get diffusion row
-            diffusion_row = list()
-            z_start = z[:n_row]
-            for t in range(self.num_timesteps):
-                if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
-                    t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
-                    t = t.to(self.device).long()
-                    noise = torch.randn_like(z_start)
-                    z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
-                    diffusion_row.append(self.decode_first_stage(z_noisy))
-
-            diffusion_row = torch.stack(diffusion_row)  # n_log_step, n_row, C, H, W
-            diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
-            diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
-            diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
-            log["diffusion_row"] = diffusion_grid
-
-        if sample:
-            # get denoise row
-            with ema_scope("Sampling"):
-                samples, z_denoise_row = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
-                                                         ddim_steps=ddim_steps, eta=ddim_eta)
-                # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
-            x_samples = self.decode_first_stage(samples)
-            log["samples"] = x_samples
-            if plot_denoise_rows:
-                denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
-                log["denoise_row"] = denoise_grid
-
-        if unconditional_guidance_scale > 1.0:
-            uc_tmp = self.get_unconditional_conditioning(N, unconditional_guidance_label)
-            # TODO explore better "unconditional" choices for the other keys
-            # maybe guide away from empty text label and highest noise level and maximally degraded zx?
-            uc = dict()
-            for k in c:
-                if k == "c_crossattn":
-                    assert isinstance(c[k], list) and len(c[k]) == 1
-                    uc[k] = [uc_tmp]
-                elif k == "c_adm":  # todo: only run with text-based guidance?
-                    assert isinstance(c[k], torch.Tensor)
-                    #uc[k] = torch.ones_like(c[k]) * self.low_scale_model.max_noise_level
-                    uc[k] = c[k]
-                elif isinstance(c[k], list):
-                    uc[k] = [c[k][i] for i in range(len(c[k]))]
-                else:
-                    uc[k] = c[k]
-
-            with ema_scope("Sampling with classifier-free guidance"):
-                samples_cfg, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,
-                                                 ddim_steps=ddim_steps, eta=ddim_eta,
-                                                 unconditional_guidance_scale=unconditional_guidance_scale,
-                                                 unconditional_conditioning=uc,
-                                                 )
-                x_samples_cfg = self.decode_first_stage(samples_cfg)
-                log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
-
-        if plot_progressive_rows:
-            with ema_scope("Plotting Progressives"):
-                img, progressives = self.progressive_denoising(c,
-                                                               shape=(self.channels, self.image_size, self.image_size),
-                                                               batch_size=N)
-            prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation")
-            log["progressive_row"] = prog_row
-
-        return log
-
-
-class LatentFinetuneDiffusion(LatentDiffusion):
-    """
-         Basis for different finetunas, such as inpainting or depth2image
-         To disable finetuning mode, set finetune_keys to None
-    """
-
-    def __init__(self,
-                 concat_keys: tuple,
-                 finetune_keys=("model.diffusion_model.input_blocks.0.0.weight",
-                                "model_ema.diffusion_modelinput_blocks00weight"
-                                ),
-                 keep_finetune_dims=4,
-                 # if model was trained without concat mode before and we would like to keep these channels
-                 c_concat_log_start=None,  # to log reconstruction of c_concat codes
-                 c_concat_log_end=None,
-                 *args, **kwargs
-                 ):
-        ckpt_path = kwargs.pop("ckpt_path", None)
-        ignore_keys = kwargs.pop("ignore_keys", list())
-        super().__init__(*args, **kwargs)
-        self.finetune_keys = finetune_keys
-        self.concat_keys = concat_keys
-        self.keep_dims = keep_finetune_dims
-        self.c_concat_log_start = c_concat_log_start
-        self.c_concat_log_end = c_concat_log_end
-        if exists(self.finetune_keys): assert exists(ckpt_path), 'can only finetune from a given checkpoint'
-        if exists(ckpt_path):
-            self.init_from_ckpt(ckpt_path, ignore_keys)
-
-    def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
-        sd = torch.load(path, map_location="cpu")
-        if "state_dict" in list(sd.keys()):
-            sd = sd["state_dict"]
-        keys = list(sd.keys())
-        for k in keys:
-            for ik in ignore_keys:
-                if k.startswith(ik):
-                    print("Deleting key {} from state_dict.".format(k))
-                    del sd[k]
-
-            # make it explicit, finetune by including extra input channels
-            if exists(self.finetune_keys) and k in self.finetune_keys:
-                new_entry = None
-                for name, param in self.named_parameters():
-                    if name in self.finetune_keys:
-                        print(
-                            f"modifying key '{name}' and keeping its original {self.keep_dims} (channels) dimensions only")
-                        new_entry = torch.zeros_like(param)  # zero init
-                assert exists(new_entry), 'did not find matching parameter to modify'
-                new_entry[:, :self.keep_dims, ...] = sd[k]
-                sd[k] = new_entry
-
-        missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
-            sd, strict=False)
-        print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
-        if len(missing) > 0:
-            print(f"Missing Keys: {missing}")
-        if len(unexpected) > 0:
-            print(f"Unexpected Keys: {unexpected}")
-
-    @torch.no_grad()
-    def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
-                   quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
-                   plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
-                   use_ema_scope=True,
-                   **kwargs):
-        ema_scope = self.ema_scope if use_ema_scope else nullcontext
-        use_ddim = ddim_steps is not None
-
-        log = dict()
-        z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, bs=N, return_first_stage_outputs=True)
-        c_cat, c = c["c_concat"][0], c["c_crossattn"][0]
-        N = min(x.shape[0], N)
-        n_row = min(x.shape[0], n_row)
-        log["inputs"] = x
-        log["reconstruction"] = xrec
-        if self.model.conditioning_key is not None:
-            if hasattr(self.cond_stage_model, "decode"):
-                xc = self.cond_stage_model.decode(c)
-                log["conditioning"] = xc
-            elif self.cond_stage_key in ["caption", "txt"]:
-                xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
-                log["conditioning"] = xc
-            elif self.cond_stage_key in ['class_label', 'cls']:
-                xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
-                log['conditioning'] = xc
-            elif isimage(xc):
-                log["conditioning"] = xc
-            if ismap(xc):
-                log["original_conditioning"] = self.to_rgb(xc)
-
-        if not (self.c_concat_log_start is None and self.c_concat_log_end is None):
-            log["c_concat_decoded"] = self.decode_first_stage(c_cat[:, self.c_concat_log_start:self.c_concat_log_end])
-
-        if plot_diffusion_rows:
-            # get diffusion row
-            diffusion_row = list()
-            z_start = z[:n_row]
-            for t in range(self.num_timesteps):
-                if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
-                    t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
-                    t = t.to(self.device).long()
-                    noise = torch.randn_like(z_start)
-                    z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
-                    diffusion_row.append(self.decode_first_stage(z_noisy))
-
-            diffusion_row = torch.stack(diffusion_row)  # n_log_step, n_row, C, H, W
-            diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
-            diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
-            diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
-            log["diffusion_row"] = diffusion_grid
-
-        if sample:
-            # get denoise row
-            with ema_scope("Sampling"):
-                samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
-                                                         batch_size=N, ddim=use_ddim,
-                                                         ddim_steps=ddim_steps, eta=ddim_eta)
-                # samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
-            x_samples = self.decode_first_stage(samples)
-            log["samples"] = x_samples
-            if plot_denoise_rows:
-                denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
-                log["denoise_row"] = denoise_grid
-
-        if unconditional_guidance_scale > 1.0:
-            uc_cross = self.get_unconditional_conditioning(N, unconditional_guidance_label)
-            uc_cat = c_cat
-            uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]}
-            with ema_scope("Sampling with classifier-free guidance"):
-                samples_cfg, _ = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
-                                                 batch_size=N, ddim=use_ddim,
-                                                 ddim_steps=ddim_steps, eta=ddim_eta,
-                                                 unconditional_guidance_scale=unconditional_guidance_scale,
-                                                 unconditional_conditioning=uc_full,
-                                                 )
-                x_samples_cfg = self.decode_first_stage(samples_cfg)
-                log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
-
-        return log
-
-
-class LatentInpaintDiffusion(LatentFinetuneDiffusion):
-    """
-    can either run as pure inpainting model (only concat mode) or with mixed conditionings,
-    e.g. mask as concat and text via cross-attn.
-    To disable finetuning mode, set finetune_keys to None
-     """
-
-    def __init__(self,
-                 concat_keys=("mask", "masked_image"),
-                 masked_image_key="masked_image",
-                 *args, **kwargs
-                 ):
-        super().__init__(concat_keys, *args, **kwargs)
-        self.masked_image_key = masked_image_key
-        assert self.masked_image_key in concat_keys
-
-    @torch.no_grad()
-    def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
-        # note: restricted to non-trainable encoders currently
-        assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for inpainting'
-        z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
-                                              force_c_encode=True, return_original_cond=True, bs=bs)
-
-        assert exists(self.concat_keys)
-        c_cat = list()
-        for ck in self.concat_keys:
-            cc = rearrange(batch[ck], 'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
-            if bs is not None:
-                cc = cc[:bs]
-                cc = cc.to(self.device)
-            bchw = z.shape
-            if ck != self.masked_image_key:
-                cc = torch.nn.functional.interpolate(cc, size=bchw[-2:])
-            else:
-                cc = self.get_first_stage_encoding(self.encode_first_stage(cc))
-            c_cat.append(cc)
-        c_cat = torch.cat(c_cat, dim=1)
-        all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
-        if return_first_stage_outputs:
-            return z, all_conds, x, xrec, xc
-        return z, all_conds
-
-    @torch.no_grad()
-    def log_images(self, *args, **kwargs):
-        log = super(LatentInpaintDiffusion, self).log_images(*args, **kwargs)
-        log["masked_image"] = rearrange(args[0]["masked_image"],
-                                        'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
-        return log
-
-
-class LatentDepth2ImageDiffusion(LatentFinetuneDiffusion):
-    """
-    condition on monocular depth estimation
-    """
-
-    def __init__(self, depth_stage_config, concat_keys=("midas_in",), *args, **kwargs):
-        super().__init__(concat_keys=concat_keys, *args, **kwargs)
-        self.depth_model = instantiate_from_config(depth_stage_config)
-        self.depth_stage_key = concat_keys[0]
-
-    @torch.no_grad()
-    def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
-        # note: restricted to non-trainable encoders currently
-        assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for depth2img'
-        z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
-                                              force_c_encode=True, return_original_cond=True, bs=bs)
-
-        assert exists(self.concat_keys)
-        assert len(self.concat_keys) == 1
-        c_cat = list()
-        for ck in self.concat_keys:
-            cc = batch[ck]
-            if bs is not None:
-                cc = cc[:bs]
-                cc = cc.to(self.device)
-            cc = self.depth_model(cc)
-            cc = torch.nn.functional.interpolate(
-                cc,
-                size=z.shape[2:],
-                mode="bicubic",
-                align_corners=False,
-            )
-            # TODO: think about this. ideally rescale by some global values
-            depth_min, depth_max = torch.amin(cc, dim=[1, 2, 3], keepdim=True), torch.amax(cc, dim=[1, 2, 3],
-                                                                                           keepdim=True)
-            cc = 2. * (cc - depth_min) / (depth_max - depth_min + 0.001) - 1.
-            c_cat.append(cc)
-        c_cat = torch.cat(c_cat, dim=1)
-        all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
-        if return_first_stage_outputs:
-            return z, all_conds, x, xrec, xc
-        return z, all_conds
-
-    @torch.no_grad()
-    def log_images(self, *args, **kwargs):
-        log = super().log_images(*args, **kwargs)
-        depth = self.depth_model(args[0][self.depth_stage_key])
-        depth_min, depth_max = torch.amin(depth, dim=[1, 2, 3], keepdim=True), \
-                               torch.amax(depth, dim=[1, 2, 3], keepdim=True)
-        log["depth"] = 2. * (depth - depth_min) / (depth_max - depth_min) - 1.
-        return log
-
-
-class LatentUpscaleFinetuneDiffusion(LatentFinetuneDiffusion):
-    """
-        condition on low-res image (and optionally on some spatial noise augmentation)
-    """
-    def __init__(self, concat_keys=("lr",), reshuffle_patch_size=None,
-                 low_scale_config=None, low_scale_key=None, *args, **kwargs):
-        super().__init__(concat_keys=concat_keys, *args, **kwargs)
-        self.reshuffle_patch_size = reshuffle_patch_size
-        self.low_scale_model = None
-        if low_scale_config is not None:
-            print("Initializing a low-scale model")
-            assert exists(low_scale_key)
-            self.instantiate_low_stage(low_scale_config)
-            self.low_scale_key = low_scale_key
-
-    def instantiate_low_stage(self, config):
-        model = instantiate_from_config(config)
-        self.low_scale_model = model.eval()
-        self.low_scale_model.train = disabled_train
-        for param in self.low_scale_model.parameters():
-            param.requires_grad = False
-
-    @torch.no_grad()
-    def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
-        # note: restricted to non-trainable encoders currently
-        assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for upscaling-ft'
-        z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
-                                              force_c_encode=True, return_original_cond=True, bs=bs)
-
-        assert exists(self.concat_keys)
-        assert len(self.concat_keys) == 1
-        # optionally make spatial noise_level here
-        c_cat = list()
-        noise_level = None
-        for ck in self.concat_keys:
-            cc = batch[ck]
-            cc = rearrange(cc, 'b h w c -> b c h w')
-            if exists(self.reshuffle_patch_size):
-                assert isinstance(self.reshuffle_patch_size, int)
-                cc = rearrange(cc, 'b c (p1 h) (p2 w) -> b (p1 p2 c) h w',
-                               p1=self.reshuffle_patch_size, p2=self.reshuffle_patch_size)
-            if bs is not None:
-                cc = cc[:bs]
-                cc = cc.to(self.device)
-            if exists(self.low_scale_model) and ck == self.low_scale_key:
-                cc, noise_level = self.low_scale_model(cc)
-            c_cat.append(cc)
-        c_cat = torch.cat(c_cat, dim=1)
-        if exists(noise_level):
-            all_conds = {"c_concat": [c_cat], "c_crossattn": [c], "c_adm": noise_level}
-        else:
-            all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
-        if return_first_stage_outputs:
-            return z, all_conds, x, xrec, xc
-        return z, all_conds
-
-    @torch.no_grad()
-    def log_images(self, *args, **kwargs):
-        log = super().log_images(*args, **kwargs)
-        log["lr"] = rearrange(args[0]["lr"], 'b h w c -> b c h w')
-        return log
diff --git a/ldm/models/diffusion/dpm_solver/__init__.py b/ldm/models/diffusion/dpm_solver/__init__.py
deleted file mode 100644
index 7427f38c07530afbab79154ea8aaf88c4bf70a08..0000000000000000000000000000000000000000
--- a/ldm/models/diffusion/dpm_solver/__init__.py
+++ /dev/null
@@ -1 +0,0 @@
-from .sampler import DPMSolverSampler
\ No newline at end of file
diff --git a/ldm/models/diffusion/dpm_solver/dpm_solver.py b/ldm/models/diffusion/dpm_solver/dpm_solver.py
deleted file mode 100644
index 095e5ba3ce0b1aa7f4b3f1e2e5d8fff7cfe6dc8c..0000000000000000000000000000000000000000
--- a/ldm/models/diffusion/dpm_solver/dpm_solver.py
+++ /dev/null
@@ -1,1154 +0,0 @@
-import torch
-import torch.nn.functional as F
-import math
-from tqdm import tqdm
-
-
-class NoiseScheduleVP:
-    def __init__(
-            self,
-            schedule='discrete',
-            betas=None,
-            alphas_cumprod=None,
-            continuous_beta_0=0.1,
-            continuous_beta_1=20.,
-    ):
-        """Create a wrapper class for the forward SDE (VP type).
-        ***
-        Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
-                We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
-        ***
-        The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
-        We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
-        Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
-            log_alpha_t = self.marginal_log_mean_coeff(t)
-            sigma_t = self.marginal_std(t)
-            lambda_t = self.marginal_lambda(t)
-        Moreover, as lambda(t) is an invertible function, we also support its inverse function:
-            t = self.inverse_lambda(lambda_t)
-        ===============================================================
-        We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
-        1. For discrete-time DPMs:
-            For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
-                t_i = (i + 1) / N
-            e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
-            We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
-            Args:
-                betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
-                alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
-            Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
-            **Important**:  Please pay special attention for the args for `alphas_cumprod`:
-                The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
-                    q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
-                Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
-                    alpha_{t_n} = \sqrt{\hat{alpha_n}},
-                and
-                    log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
-        2. For continuous-time DPMs:
-            We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
-            schedule are the default settings in DDPM and improved-DDPM:
-            Args:
-                beta_min: A `float` number. The smallest beta for the linear schedule.
-                beta_max: A `float` number. The largest beta for the linear schedule.
-                cosine_s: A `float` number. The hyperparameter in the cosine schedule.
-                cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
-                T: A `float` number. The ending time of the forward process.
-        ===============================================================
-        Args:
-            schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
-                    'linear' or 'cosine' for continuous-time DPMs.
-        Returns:
-            A wrapper object of the forward SDE (VP type).
-
-        ===============================================================
-        Example:
-        # For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
-        >>> ns = NoiseScheduleVP('discrete', betas=betas)
-        # For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
-        >>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
-        # For continuous-time DPMs (VPSDE), linear schedule:
-        >>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
-        """
-
-        if schedule not in ['discrete', 'linear', 'cosine']:
-            raise ValueError(
-                "Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(
-                    schedule))
-
-        self.schedule = schedule
-        if schedule == 'discrete':
-            if betas is not None:
-                log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
-            else:
-                assert alphas_cumprod is not None
-                log_alphas = 0.5 * torch.log(alphas_cumprod)
-            self.total_N = len(log_alphas)
-            self.T = 1.
-            self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1))
-            self.log_alpha_array = log_alphas.reshape((1, -1,))
-        else:
-            self.total_N = 1000
-            self.beta_0 = continuous_beta_0
-            self.beta_1 = continuous_beta_1
-            self.cosine_s = 0.008
-            self.cosine_beta_max = 999.
-            self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (
-                        1. + self.cosine_s) / math.pi - self.cosine_s
-            self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
-            self.schedule = schedule
-            if schedule == 'cosine':
-                # For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
-                # Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
-                self.T = 0.9946
-            else:
-                self.T = 1.
-
-    def marginal_log_mean_coeff(self, t):
-        """
-        Compute log(alpha_t) of a given continuous-time label t in [0, T].
-        """
-        if self.schedule == 'discrete':
-            return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device),
-                                  self.log_alpha_array.to(t.device)).reshape((-1))
-        elif self.schedule == 'linear':
-            return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
-        elif self.schedule == 'cosine':
-            log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.))
-            log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
-            return log_alpha_t
-
-    def marginal_alpha(self, t):
-        """
-        Compute alpha_t of a given continuous-time label t in [0, T].
-        """
-        return torch.exp(self.marginal_log_mean_coeff(t))
-
-    def marginal_std(self, t):
-        """
-        Compute sigma_t of a given continuous-time label t in [0, T].
-        """
-        return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
-
-    def marginal_lambda(self, t):
-        """
-        Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
-        """
-        log_mean_coeff = self.marginal_log_mean_coeff(t)
-        log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
-        return log_mean_coeff - log_std
-
-    def inverse_lambda(self, lamb):
-        """
-        Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
-        """
-        if self.schedule == 'linear':
-            tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
-            Delta = self.beta_0 ** 2 + tmp
-            return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
-        elif self.schedule == 'discrete':
-            log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
-            t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]),
-                               torch.flip(self.t_array.to(lamb.device), [1]))
-            return t.reshape((-1,))
-        else:
-            log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
-            t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (
-                        1. + self.cosine_s) / math.pi - self.cosine_s
-            t = t_fn(log_alpha)
-            return t
-
-
-def model_wrapper(
-        model,
-        noise_schedule,
-        model_type="noise",
-        model_kwargs={},
-        guidance_type="uncond",
-        condition=None,
-        unconditional_condition=None,
-        guidance_scale=1.,
-        classifier_fn=None,
-        classifier_kwargs={},
-):
-    """Create a wrapper function for the noise prediction model.
-    DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
-    firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
-    We support four types of the diffusion model by setting `model_type`:
-        1. "noise": noise prediction model. (Trained by predicting noise).
-        2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
-        3. "v": velocity prediction model. (Trained by predicting the velocity).
-            The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
-            [1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
-                arXiv preprint arXiv:2202.00512 (2022).
-            [2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
-                arXiv preprint arXiv:2210.02303 (2022).
-
-        4. "score": marginal score function. (Trained by denoising score matching).
-            Note that the score function and the noise prediction model follows a simple relationship:
-            ```
-                noise(x_t, t) = -sigma_t * score(x_t, t)
-            ```
-    We support three types of guided sampling by DPMs by setting `guidance_type`:
-        1. "uncond": unconditional sampling by DPMs.
-            The input `model` has the following format:
-            ``
-                model(x, t_input, **model_kwargs) -> noise | x_start | v | score
-            ``
-        2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
-            The input `model` has the following format:
-            ``
-                model(x, t_input, **model_kwargs) -> noise | x_start | v | score
-            ``
-            The input `classifier_fn` has the following format:
-            ``
-                classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
-            ``
-            [3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
-                in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
-        3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
-            The input `model` has the following format:
-            ``
-                model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
-            ``
-            And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
-            [4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
-                arXiv preprint arXiv:2207.12598 (2022).
-
-    The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
-    or continuous-time labels (i.e. epsilon to T).
-    We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
-    ``
-        def model_fn(x, t_continuous) -> noise:
-            t_input = get_model_input_time(t_continuous)
-            return noise_pred(model, x, t_input, **model_kwargs)
-    ``
-    where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
-    ===============================================================
-    Args:
-        model: A diffusion model with the corresponding format described above.
-        noise_schedule: A noise schedule object, such as NoiseScheduleVP.
-        model_type: A `str`. The parameterization type of the diffusion model.
-                    "noise" or "x_start" or "v" or "score".
-        model_kwargs: A `dict`. A dict for the other inputs of the model function.
-        guidance_type: A `str`. The type of the guidance for sampling.
-                    "uncond" or "classifier" or "classifier-free".
-        condition: A pytorch tensor. The condition for the guided sampling.
-                    Only used for "classifier" or "classifier-free" guidance type.
-        unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
-                    Only used for "classifier-free" guidance type.
-        guidance_scale: A `float`. The scale for the guided sampling.
-        classifier_fn: A classifier function. Only used for the classifier guidance.
-        classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
-    Returns:
-        A noise prediction model that accepts the noised data and the continuous time as the inputs.
-    """
-
-    def get_model_input_time(t_continuous):
-        """
-        Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
-        For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
-        For continuous-time DPMs, we just use `t_continuous`.
-        """
-        if noise_schedule.schedule == 'discrete':
-            return (t_continuous - 1. / noise_schedule.total_N) * 1000.
-        else:
-            return t_continuous
-
-    def noise_pred_fn(x, t_continuous, cond=None):
-        if t_continuous.reshape((-1,)).shape[0] == 1:
-            t_continuous = t_continuous.expand((x.shape[0]))
-        t_input = get_model_input_time(t_continuous)
-        if cond is None:
-            output = model(x, t_input, **model_kwargs)
-        else:
-            output = model(x, t_input, cond, **model_kwargs)
-        if model_type == "noise":
-            return output
-        elif model_type == "x_start":
-            alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
-            dims = x.dim()
-            return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims)
-        elif model_type == "v":
-            alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
-            dims = x.dim()
-            return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x
-        elif model_type == "score":
-            sigma_t = noise_schedule.marginal_std(t_continuous)
-            dims = x.dim()
-            return -expand_dims(sigma_t, dims) * output
-
-    def cond_grad_fn(x, t_input):
-        """
-        Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
-        """
-        with torch.enable_grad():
-            x_in = x.detach().requires_grad_(True)
-            log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
-            return torch.autograd.grad(log_prob.sum(), x_in)[0]
-
-    def model_fn(x, t_continuous):
-        """
-        The noise predicition model function that is used for DPM-Solver.
-        """
-        if t_continuous.reshape((-1,)).shape[0] == 1:
-            t_continuous = t_continuous.expand((x.shape[0]))
-        if guidance_type == "uncond":
-            return noise_pred_fn(x, t_continuous)
-        elif guidance_type == "classifier":
-            assert classifier_fn is not None
-            t_input = get_model_input_time(t_continuous)
-            cond_grad = cond_grad_fn(x, t_input)
-            sigma_t = noise_schedule.marginal_std(t_continuous)
-            noise = noise_pred_fn(x, t_continuous)
-            return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad
-        elif guidance_type == "classifier-free":
-            if guidance_scale == 1. or unconditional_condition is None:
-                return noise_pred_fn(x, t_continuous, cond=condition)
-            else:
-                x_in = torch.cat([x] * 2)
-                t_in = torch.cat([t_continuous] * 2)
-                c_in = torch.cat([unconditional_condition, condition])
-                noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
-                return noise_uncond + guidance_scale * (noise - noise_uncond)
-
-    assert model_type in ["noise", "x_start", "v"]
-    assert guidance_type in ["uncond", "classifier", "classifier-free"]
-    return model_fn
-
-
-class DPM_Solver:
-    def __init__(self, model_fn, noise_schedule, predict_x0=False, thresholding=False, max_val=1.):
-        """Construct a DPM-Solver.
-        We support both the noise prediction model ("predicting epsilon") and the data prediction model ("predicting x0").
-        If `predict_x0` is False, we use the solver for the noise prediction model (DPM-Solver).
-        If `predict_x0` is True, we use the solver for the data prediction model (DPM-Solver++).
-            In such case, we further support the "dynamic thresholding" in [1] when `thresholding` is True.
-            The "dynamic thresholding" can greatly improve the sample quality for pixel-space DPMs with large guidance scales.
-        Args:
-            model_fn: A noise prediction model function which accepts the continuous-time input (t in [epsilon, T]):
-                ``
-                def model_fn(x, t_continuous):
-                    return noise
-                ``
-            noise_schedule: A noise schedule object, such as NoiseScheduleVP.
-            predict_x0: A `bool`. If true, use the data prediction model; else, use the noise prediction model.
-            thresholding: A `bool`. Valid when `predict_x0` is True. Whether to use the "dynamic thresholding" in [1].
-            max_val: A `float`. Valid when both `predict_x0` and `thresholding` are True. The max value for thresholding.
-
-        [1] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint arXiv:2205.11487, 2022b.
-        """
-        self.model = model_fn
-        self.noise_schedule = noise_schedule
-        self.predict_x0 = predict_x0
-        self.thresholding = thresholding
-        self.max_val = max_val
-
-    def noise_prediction_fn(self, x, t):
-        """
-        Return the noise prediction model.
-        """
-        return self.model(x, t)
-
-    def data_prediction_fn(self, x, t):
-        """
-        Return the data prediction model (with thresholding).
-        """
-        noise = self.noise_prediction_fn(x, t)
-        dims = x.dim()
-        alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
-        x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims)
-        if self.thresholding:
-            p = 0.995  # A hyperparameter in the paper of "Imagen" [1].
-            s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
-            s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims)
-            x0 = torch.clamp(x0, -s, s) / s
-        return x0
-
-    def model_fn(self, x, t):
-        """
-        Convert the model to the noise prediction model or the data prediction model.
-        """
-        if self.predict_x0:
-            return self.data_prediction_fn(x, t)
-        else:
-            return self.noise_prediction_fn(x, t)
-
-    def get_time_steps(self, skip_type, t_T, t_0, N, device):
-        """Compute the intermediate time steps for sampling.
-        Args:
-            skip_type: A `str`. The type for the spacing of the time steps. We support three types:
-                - 'logSNR': uniform logSNR for the time steps.
-                - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
-                - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
-            t_T: A `float`. The starting time of the sampling (default is T).
-            t_0: A `float`. The ending time of the sampling (default is epsilon).
-            N: A `int`. The total number of the spacing of the time steps.
-            device: A torch device.
-        Returns:
-            A pytorch tensor of the time steps, with the shape (N + 1,).
-        """
-        if skip_type == 'logSNR':
-            lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
-            lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
-            logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
-            return self.noise_schedule.inverse_lambda(logSNR_steps)
-        elif skip_type == 'time_uniform':
-            return torch.linspace(t_T, t_0, N + 1).to(device)
-        elif skip_type == 'time_quadratic':
-            t_order = 2
-            t = torch.linspace(t_T ** (1. / t_order), t_0 ** (1. / t_order), N + 1).pow(t_order).to(device)
-            return t
-        else:
-            raise ValueError(
-                "Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))
-
-    def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
-        """
-        Get the order of each step for sampling by the singlestep DPM-Solver.
-        We combine both DPM-Solver-1,2,3 to use all the function evaluations, which is named as "DPM-Solver-fast".
-        Given a fixed number of function evaluations by `steps`, the sampling procedure by DPM-Solver-fast is:
-            - If order == 1:
-                We take `steps` of DPM-Solver-1 (i.e. DDIM).
-            - If order == 2:
-                - Denote K = (steps // 2). We take K or (K + 1) intermediate time steps for sampling.
-                - If steps % 2 == 0, we use K steps of DPM-Solver-2.
-                - If steps % 2 == 1, we use K steps of DPM-Solver-2 and 1 step of DPM-Solver-1.
-            - If order == 3:
-                - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
-                - If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1.
-                - If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1.
-                - If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2.
-        ============================================
-        Args:
-            order: A `int`. The max order for the solver (2 or 3).
-            steps: A `int`. The total number of function evaluations (NFE).
-            skip_type: A `str`. The type for the spacing of the time steps. We support three types:
-                - 'logSNR': uniform logSNR for the time steps.
-                - 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
-                - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
-            t_T: A `float`. The starting time of the sampling (default is T).
-            t_0: A `float`. The ending time of the sampling (default is epsilon).
-            device: A torch device.
-        Returns:
-            orders: A list of the solver order of each step.
-        """
-        if order == 3:
-            K = steps // 3 + 1
-            if steps % 3 == 0:
-                orders = [3, ] * (K - 2) + [2, 1]
-            elif steps % 3 == 1:
-                orders = [3, ] * (K - 1) + [1]
-            else:
-                orders = [3, ] * (K - 1) + [2]
-        elif order == 2:
-            if steps % 2 == 0:
-                K = steps // 2
-                orders = [2, ] * K
-            else:
-                K = steps // 2 + 1
-                orders = [2, ] * (K - 1) + [1]
-        elif order == 1:
-            K = 1
-            orders = [1, ] * steps
-        else:
-            raise ValueError("'order' must be '1' or '2' or '3'.")
-        if skip_type == 'logSNR':
-            # To reproduce the results in DPM-Solver paper
-            timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
-        else:
-            timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[
-                torch.cumsum(torch.tensor([0, ] + orders)).to(device)]
-        return timesteps_outer, orders
-
-    def denoise_to_zero_fn(self, x, s):
-        """
-        Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
-        """
-        return self.data_prediction_fn(x, s)
-
-    def dpm_solver_first_update(self, x, s, t, model_s=None, return_intermediate=False):
-        """
-        DPM-Solver-1 (equivalent to DDIM) from time `s` to time `t`.
-        Args:
-            x: A pytorch tensor. The initial value at time `s`.
-            s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
-            t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
-            model_s: A pytorch tensor. The model function evaluated at time `s`.
-                If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
-            return_intermediate: A `bool`. If true, also return the model value at time `s`.
-        Returns:
-            x_t: A pytorch tensor. The approximated solution at time `t`.
-        """
-        ns = self.noise_schedule
-        dims = x.dim()
-        lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
-        h = lambda_t - lambda_s
-        log_alpha_s, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(t)
-        sigma_s, sigma_t = ns.marginal_std(s), ns.marginal_std(t)
-        alpha_t = torch.exp(log_alpha_t)
-
-        if self.predict_x0:
-            phi_1 = torch.expm1(-h)
-            if model_s is None:
-                model_s = self.model_fn(x, s)
-            x_t = (
-                    expand_dims(sigma_t / sigma_s, dims) * x
-                    - expand_dims(alpha_t * phi_1, dims) * model_s
-            )
-            if return_intermediate:
-                return x_t, {'model_s': model_s}
-            else:
-                return x_t
-        else:
-            phi_1 = torch.expm1(h)
-            if model_s is None:
-                model_s = self.model_fn(x, s)
-            x_t = (
-                    expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
-                    - expand_dims(sigma_t * phi_1, dims) * model_s
-            )
-            if return_intermediate:
-                return x_t, {'model_s': model_s}
-            else:
-                return x_t
-
-    def singlestep_dpm_solver_second_update(self, x, s, t, r1=0.5, model_s=None, return_intermediate=False,
-                                            solver_type='dpm_solver'):
-        """
-        Singlestep solver DPM-Solver-2 from time `s` to time `t`.
-        Args:
-            x: A pytorch tensor. The initial value at time `s`.
-            s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
-            t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
-            r1: A `float`. The hyperparameter of the second-order solver.
-            model_s: A pytorch tensor. The model function evaluated at time `s`.
-                If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
-            return_intermediate: A `bool`. If true, also return the model value at time `s` and `s1` (the intermediate time).
-            solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
-                The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
-        Returns:
-            x_t: A pytorch tensor. The approximated solution at time `t`.
-        """
-        if solver_type not in ['dpm_solver', 'taylor']:
-            raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
-        if r1 is None:
-            r1 = 0.5
-        ns = self.noise_schedule
-        dims = x.dim()
-        lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
-        h = lambda_t - lambda_s
-        lambda_s1 = lambda_s + r1 * h
-        s1 = ns.inverse_lambda(lambda_s1)
-        log_alpha_s, log_alpha_s1, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(
-            s1), ns.marginal_log_mean_coeff(t)
-        sigma_s, sigma_s1, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(t)
-        alpha_s1, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_t)
-
-        if self.predict_x0:
-            phi_11 = torch.expm1(-r1 * h)
-            phi_1 = torch.expm1(-h)
-
-            if model_s is None:
-                model_s = self.model_fn(x, s)
-            x_s1 = (
-                    expand_dims(sigma_s1 / sigma_s, dims) * x
-                    - expand_dims(alpha_s1 * phi_11, dims) * model_s
-            )
-            model_s1 = self.model_fn(x_s1, s1)
-            if solver_type == 'dpm_solver':
-                x_t = (
-                        expand_dims(sigma_t / sigma_s, dims) * x
-                        - expand_dims(alpha_t * phi_1, dims) * model_s
-                        - (0.5 / r1) * expand_dims(alpha_t * phi_1, dims) * (model_s1 - model_s)
-                )
-            elif solver_type == 'taylor':
-                x_t = (
-                        expand_dims(sigma_t / sigma_s, dims) * x
-                        - expand_dims(alpha_t * phi_1, dims) * model_s
-                        + (1. / r1) * expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * (
-                                    model_s1 - model_s)
-                )
-        else:
-            phi_11 = torch.expm1(r1 * h)
-            phi_1 = torch.expm1(h)
-
-            if model_s is None:
-                model_s = self.model_fn(x, s)
-            x_s1 = (
-                    expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
-                    - expand_dims(sigma_s1 * phi_11, dims) * model_s
-            )
-            model_s1 = self.model_fn(x_s1, s1)
-            if solver_type == 'dpm_solver':
-                x_t = (
-                        expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
-                        - expand_dims(sigma_t * phi_1, dims) * model_s
-                        - (0.5 / r1) * expand_dims(sigma_t * phi_1, dims) * (model_s1 - model_s)
-                )
-            elif solver_type == 'taylor':
-                x_t = (
-                        expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
-                        - expand_dims(sigma_t * phi_1, dims) * model_s
-                        - (1. / r1) * expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * (model_s1 - model_s)
-                )
-        if return_intermediate:
-            return x_t, {'model_s': model_s, 'model_s1': model_s1}
-        else:
-            return x_t
-
-    def singlestep_dpm_solver_third_update(self, x, s, t, r1=1. / 3., r2=2. / 3., model_s=None, model_s1=None,
-                                           return_intermediate=False, solver_type='dpm_solver'):
-        """
-        Singlestep solver DPM-Solver-3 from time `s` to time `t`.
-        Args:
-            x: A pytorch tensor. The initial value at time `s`.
-            s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
-            t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
-            r1: A `float`. The hyperparameter of the third-order solver.
-            r2: A `float`. The hyperparameter of the third-order solver.
-            model_s: A pytorch tensor. The model function evaluated at time `s`.
-                If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
-            model_s1: A pytorch tensor. The model function evaluated at time `s1` (the intermediate time given by `r1`).
-                If `model_s1` is None, we evaluate the model at `s1`; otherwise we directly use it.
-            return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
-            solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
-                The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
-        Returns:
-            x_t: A pytorch tensor. The approximated solution at time `t`.
-        """
-        if solver_type not in ['dpm_solver', 'taylor']:
-            raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
-        if r1 is None:
-            r1 = 1. / 3.
-        if r2 is None:
-            r2 = 2. / 3.
-        ns = self.noise_schedule
-        dims = x.dim()
-        lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
-        h = lambda_t - lambda_s
-        lambda_s1 = lambda_s + r1 * h
-        lambda_s2 = lambda_s + r2 * h
-        s1 = ns.inverse_lambda(lambda_s1)
-        s2 = ns.inverse_lambda(lambda_s2)
-        log_alpha_s, log_alpha_s1, log_alpha_s2, log_alpha_t = ns.marginal_log_mean_coeff(
-            s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(s2), ns.marginal_log_mean_coeff(t)
-        sigma_s, sigma_s1, sigma_s2, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(
-            s2), ns.marginal_std(t)
-        alpha_s1, alpha_s2, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_s2), torch.exp(log_alpha_t)
-
-        if self.predict_x0:
-            phi_11 = torch.expm1(-r1 * h)
-            phi_12 = torch.expm1(-r2 * h)
-            phi_1 = torch.expm1(-h)
-            phi_22 = torch.expm1(-r2 * h) / (r2 * h) + 1.
-            phi_2 = phi_1 / h + 1.
-            phi_3 = phi_2 / h - 0.5
-
-            if model_s is None:
-                model_s = self.model_fn(x, s)
-            if model_s1 is None:
-                x_s1 = (
-                        expand_dims(sigma_s1 / sigma_s, dims) * x
-                        - expand_dims(alpha_s1 * phi_11, dims) * model_s
-                )
-                model_s1 = self.model_fn(x_s1, s1)
-            x_s2 = (
-                    expand_dims(sigma_s2 / sigma_s, dims) * x
-                    - expand_dims(alpha_s2 * phi_12, dims) * model_s
-                    + r2 / r1 * expand_dims(alpha_s2 * phi_22, dims) * (model_s1 - model_s)
-            )
-            model_s2 = self.model_fn(x_s2, s2)
-            if solver_type == 'dpm_solver':
-                x_t = (
-                        expand_dims(sigma_t / sigma_s, dims) * x
-                        - expand_dims(alpha_t * phi_1, dims) * model_s
-                        + (1. / r2) * expand_dims(alpha_t * phi_2, dims) * (model_s2 - model_s)
-                )
-            elif solver_type == 'taylor':
-                D1_0 = (1. / r1) * (model_s1 - model_s)
-                D1_1 = (1. / r2) * (model_s2 - model_s)
-                D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
-                D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
-                x_t = (
-                        expand_dims(sigma_t / sigma_s, dims) * x
-                        - expand_dims(alpha_t * phi_1, dims) * model_s
-                        + expand_dims(alpha_t * phi_2, dims) * D1
-                        - expand_dims(alpha_t * phi_3, dims) * D2
-                )
-        else:
-            phi_11 = torch.expm1(r1 * h)
-            phi_12 = torch.expm1(r2 * h)
-            phi_1 = torch.expm1(h)
-            phi_22 = torch.expm1(r2 * h) / (r2 * h) - 1.
-            phi_2 = phi_1 / h - 1.
-            phi_3 = phi_2 / h - 0.5
-
-            if model_s is None:
-                model_s = self.model_fn(x, s)
-            if model_s1 is None:
-                x_s1 = (
-                        expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
-                        - expand_dims(sigma_s1 * phi_11, dims) * model_s
-                )
-                model_s1 = self.model_fn(x_s1, s1)
-            x_s2 = (
-                    expand_dims(torch.exp(log_alpha_s2 - log_alpha_s), dims) * x
-                    - expand_dims(sigma_s2 * phi_12, dims) * model_s
-                    - r2 / r1 * expand_dims(sigma_s2 * phi_22, dims) * (model_s1 - model_s)
-            )
-            model_s2 = self.model_fn(x_s2, s2)
-            if solver_type == 'dpm_solver':
-                x_t = (
-                        expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
-                        - expand_dims(sigma_t * phi_1, dims) * model_s
-                        - (1. / r2) * expand_dims(sigma_t * phi_2, dims) * (model_s2 - model_s)
-                )
-            elif solver_type == 'taylor':
-                D1_0 = (1. / r1) * (model_s1 - model_s)
-                D1_1 = (1. / r2) * (model_s2 - model_s)
-                D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
-                D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
-                x_t = (
-                        expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
-                        - expand_dims(sigma_t * phi_1, dims) * model_s
-                        - expand_dims(sigma_t * phi_2, dims) * D1
-                        - expand_dims(sigma_t * phi_3, dims) * D2
-                )
-
-        if return_intermediate:
-            return x_t, {'model_s': model_s, 'model_s1': model_s1, 'model_s2': model_s2}
-        else:
-            return x_t
-
-    def multistep_dpm_solver_second_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpm_solver"):
-        """
-        Multistep solver DPM-Solver-2 from time `t_prev_list[-1]` to time `t`.
-        Args:
-            x: A pytorch tensor. The initial value at time `s`.
-            model_prev_list: A list of pytorch tensor. The previous computed model values.
-            t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
-            t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
-            solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
-                The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
-        Returns:
-            x_t: A pytorch tensor. The approximated solution at time `t`.
-        """
-        if solver_type not in ['dpm_solver', 'taylor']:
-            raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
-        ns = self.noise_schedule
-        dims = x.dim()
-        model_prev_1, model_prev_0 = model_prev_list
-        t_prev_1, t_prev_0 = t_prev_list
-        lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_1), ns.marginal_lambda(
-            t_prev_0), ns.marginal_lambda(t)
-        log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
-        sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
-        alpha_t = torch.exp(log_alpha_t)
-
-        h_0 = lambda_prev_0 - lambda_prev_1
-        h = lambda_t - lambda_prev_0
-        r0 = h_0 / h
-        D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
-        if self.predict_x0:
-            if solver_type == 'dpm_solver':
-                x_t = (
-                        expand_dims(sigma_t / sigma_prev_0, dims) * x
-                        - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
-                        - 0.5 * expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * D1_0
-                )
-            elif solver_type == 'taylor':
-                x_t = (
-                        expand_dims(sigma_t / sigma_prev_0, dims) * x
-                        - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
-                        + expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1_0
-                )
-        else:
-            if solver_type == 'dpm_solver':
-                x_t = (
-                        expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
-                        - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
-                        - 0.5 * expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * D1_0
-                )
-            elif solver_type == 'taylor':
-                x_t = (
-                        expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
-                        - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
-                        - expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1_0
-                )
-        return x_t
-
-    def multistep_dpm_solver_third_update(self, x, model_prev_list, t_prev_list, t, solver_type='dpm_solver'):
-        """
-        Multistep solver DPM-Solver-3 from time `t_prev_list[-1]` to time `t`.
-        Args:
-            x: A pytorch tensor. The initial value at time `s`.
-            model_prev_list: A list of pytorch tensor. The previous computed model values.
-            t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
-            t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
-            solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
-                The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
-        Returns:
-            x_t: A pytorch tensor. The approximated solution at time `t`.
-        """
-        ns = self.noise_schedule
-        dims = x.dim()
-        model_prev_2, model_prev_1, model_prev_0 = model_prev_list
-        t_prev_2, t_prev_1, t_prev_0 = t_prev_list
-        lambda_prev_2, lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_2), ns.marginal_lambda(
-            t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t)
-        log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
-        sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
-        alpha_t = torch.exp(log_alpha_t)
-
-        h_1 = lambda_prev_1 - lambda_prev_2
-        h_0 = lambda_prev_0 - lambda_prev_1
-        h = lambda_t - lambda_prev_0
-        r0, r1 = h_0 / h, h_1 / h
-        D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
-        D1_1 = expand_dims(1. / r1, dims) * (model_prev_1 - model_prev_2)
-        D1 = D1_0 + expand_dims(r0 / (r0 + r1), dims) * (D1_0 - D1_1)
-        D2 = expand_dims(1. / (r0 + r1), dims) * (D1_0 - D1_1)
-        if self.predict_x0:
-            x_t = (
-                    expand_dims(sigma_t / sigma_prev_0, dims) * x
-                    - expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
-                    + expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1
-                    - expand_dims(alpha_t * ((torch.exp(-h) - 1. + h) / h ** 2 - 0.5), dims) * D2
-            )
-        else:
-            x_t = (
-                    expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
-                    - expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
-                    - expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1
-                    - expand_dims(sigma_t * ((torch.exp(h) - 1. - h) / h ** 2 - 0.5), dims) * D2
-            )
-        return x_t
-
-    def singlestep_dpm_solver_update(self, x, s, t, order, return_intermediate=False, solver_type='dpm_solver', r1=None,
-                                     r2=None):
-        """
-        Singlestep DPM-Solver with the order `order` from time `s` to time `t`.
-        Args:
-            x: A pytorch tensor. The initial value at time `s`.
-            s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
-            t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
-            order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
-            return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
-            solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
-                The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
-            r1: A `float`. The hyperparameter of the second-order or third-order solver.
-            r2: A `float`. The hyperparameter of the third-order solver.
-        Returns:
-            x_t: A pytorch tensor. The approximated solution at time `t`.
-        """
-        if order == 1:
-            return self.dpm_solver_first_update(x, s, t, return_intermediate=return_intermediate)
-        elif order == 2:
-            return self.singlestep_dpm_solver_second_update(x, s, t, return_intermediate=return_intermediate,
-                                                            solver_type=solver_type, r1=r1)
-        elif order == 3:
-            return self.singlestep_dpm_solver_third_update(x, s, t, return_intermediate=return_intermediate,
-                                                           solver_type=solver_type, r1=r1, r2=r2)
-        else:
-            raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
-
-    def multistep_dpm_solver_update(self, x, model_prev_list, t_prev_list, t, order, solver_type='dpm_solver'):
-        """
-        Multistep DPM-Solver with the order `order` from time `t_prev_list[-1]` to time `t`.
-        Args:
-            x: A pytorch tensor. The initial value at time `s`.
-            model_prev_list: A list of pytorch tensor. The previous computed model values.
-            t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
-            t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
-            order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
-            solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
-                The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
-        Returns:
-            x_t: A pytorch tensor. The approximated solution at time `t`.
-        """
-        if order == 1:
-            return self.dpm_solver_first_update(x, t_prev_list[-1], t, model_s=model_prev_list[-1])
-        elif order == 2:
-            return self.multistep_dpm_solver_second_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
-        elif order == 3:
-            return self.multistep_dpm_solver_third_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
-        else:
-            raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
-
-    def dpm_solver_adaptive(self, x, order, t_T, t_0, h_init=0.05, atol=0.0078, rtol=0.05, theta=0.9, t_err=1e-5,
-                            solver_type='dpm_solver'):
-        """
-        The adaptive step size solver based on singlestep DPM-Solver.
-        Args:
-            x: A pytorch tensor. The initial value at time `t_T`.
-            order: A `int`. The (higher) order of the solver. We only support order == 2 or 3.
-            t_T: A `float`. The starting time of the sampling (default is T).
-            t_0: A `float`. The ending time of the sampling (default is epsilon).
-            h_init: A `float`. The initial step size (for logSNR).
-            atol: A `float`. The absolute tolerance of the solver. For image data, the default setting is 0.0078, followed [1].
-            rtol: A `float`. The relative tolerance of the solver. The default setting is 0.05.
-            theta: A `float`. The safety hyperparameter for adapting the step size. The default setting is 0.9, followed [1].
-            t_err: A `float`. The tolerance for the time. We solve the diffusion ODE until the absolute error between the
-                current time and `t_0` is less than `t_err`. The default setting is 1e-5.
-            solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
-                The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
-        Returns:
-            x_0: A pytorch tensor. The approximated solution at time `t_0`.
-        [1] A. Jolicoeur-Martineau, K. Li, R. Pichรฉ-Taillefer, T. Kachman, and I. Mitliagkas, "Gotta go fast when generating data with score-based models," arXiv preprint arXiv:2105.14080, 2021.
-        """
-        ns = self.noise_schedule
-        s = t_T * torch.ones((x.shape[0],)).to(x)
-        lambda_s = ns.marginal_lambda(s)
-        lambda_0 = ns.marginal_lambda(t_0 * torch.ones_like(s).to(x))
-        h = h_init * torch.ones_like(s).to(x)
-        x_prev = x
-        nfe = 0
-        if order == 2:
-            r1 = 0.5
-            lower_update = lambda x, s, t: self.dpm_solver_first_update(x, s, t, return_intermediate=True)
-            higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1,
-                                                                                               solver_type=solver_type,
-                                                                                               **kwargs)
-        elif order == 3:
-            r1, r2 = 1. / 3., 2. / 3.
-            lower_update = lambda x, s, t: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1,
-                                                                                    return_intermediate=True,
-                                                                                    solver_type=solver_type)
-            higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_third_update(x, s, t, r1=r1, r2=r2,
-                                                                                              solver_type=solver_type,
-                                                                                              **kwargs)
-        else:
-            raise ValueError("For adaptive step size solver, order must be 2 or 3, got {}".format(order))
-        while torch.abs((s - t_0)).mean() > t_err:
-            t = ns.inverse_lambda(lambda_s + h)
-            x_lower, lower_noise_kwargs = lower_update(x, s, t)
-            x_higher = higher_update(x, s, t, **lower_noise_kwargs)
-            delta = torch.max(torch.ones_like(x).to(x) * atol, rtol * torch.max(torch.abs(x_lower), torch.abs(x_prev)))
-            norm_fn = lambda v: torch.sqrt(torch.square(v.reshape((v.shape[0], -1))).mean(dim=-1, keepdim=True))
-            E = norm_fn((x_higher - x_lower) / delta).max()
-            if torch.all(E <= 1.):
-                x = x_higher
-                s = t
-                x_prev = x_lower
-                lambda_s = ns.marginal_lambda(s)
-            h = torch.min(theta * h * torch.float_power(E, -1. / order).float(), lambda_0 - lambda_s)
-            nfe += order
-        print('adaptive solver nfe', nfe)
-        return x
-
-    def sample(self, x, steps=20, t_start=None, t_end=None, order=3, skip_type='time_uniform',
-               method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver',
-               atol=0.0078, rtol=0.05,
-               ):
-        """
-        Compute the sample at time `t_end` by DPM-Solver, given the initial `x` at time `t_start`.
-        =====================================================
-        We support the following algorithms for both noise prediction model and data prediction model:
-            - 'singlestep':
-                Singlestep DPM-Solver (i.e. "DPM-Solver-fast" in the paper), which combines different orders of singlestep DPM-Solver.
-                We combine all the singlestep solvers with order <= `order` to use up all the function evaluations (steps).
-                The total number of function evaluations (NFE) == `steps`.
-                Given a fixed NFE == `steps`, the sampling procedure is:
-                    - If `order` == 1:
-                        - Denote K = steps. We use K steps of DPM-Solver-1 (i.e. DDIM).
-                    - If `order` == 2:
-                        - Denote K = (steps // 2) + (steps % 2). We take K intermediate time steps for sampling.
-                        - If steps % 2 == 0, we use K steps of singlestep DPM-Solver-2.
-                        - If steps % 2 == 1, we use (K - 1) steps of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
-                    - If `order` == 3:
-                        - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
-                        - If steps % 3 == 0, we use (K - 2) steps of singlestep DPM-Solver-3, and 1 step of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
-                        - If steps % 3 == 1, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of DPM-Solver-1.
-                        - If steps % 3 == 2, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of singlestep DPM-Solver-2.
-            - 'multistep':
-                Multistep DPM-Solver with the order of `order`. The total number of function evaluations (NFE) == `steps`.
-                We initialize the first `order` values by lower order multistep solvers.
-                Given a fixed NFE == `steps`, the sampling procedure is:
-                    Denote K = steps.
-                    - If `order` == 1:
-                        - We use K steps of DPM-Solver-1 (i.e. DDIM).
-                    - If `order` == 2:
-                        - We firstly use 1 step of DPM-Solver-1, then use (K - 1) step of multistep DPM-Solver-2.
-                    - If `order` == 3:
-                        - We firstly use 1 step of DPM-Solver-1, then 1 step of multistep DPM-Solver-2, then (K - 2) step of multistep DPM-Solver-3.
-            - 'singlestep_fixed':
-                Fixed order singlestep DPM-Solver (i.e. DPM-Solver-1 or singlestep DPM-Solver-2 or singlestep DPM-Solver-3).
-                We use singlestep DPM-Solver-`order` for `order`=1 or 2 or 3, with total [`steps` // `order`] * `order` NFE.
-            - 'adaptive':
-                Adaptive step size DPM-Solver (i.e. "DPM-Solver-12" and "DPM-Solver-23" in the paper).
-                We ignore `steps` and use adaptive step size DPM-Solver with a higher order of `order`.
-                You can adjust the absolute tolerance `atol` and the relative tolerance `rtol` to balance the computatation costs
-                (NFE) and the sample quality.
-                    - If `order` == 2, we use DPM-Solver-12 which combines DPM-Solver-1 and singlestep DPM-Solver-2.
-                    - If `order` == 3, we use DPM-Solver-23 which combines singlestep DPM-Solver-2 and singlestep DPM-Solver-3.
-        =====================================================
-        Some advices for choosing the algorithm:
-            - For **unconditional sampling** or **guided sampling with small guidance scale** by DPMs:
-                Use singlestep DPM-Solver ("DPM-Solver-fast" in the paper) with `order = 3`.
-                e.g.
-                    >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=False)
-                    >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3,
-                            skip_type='time_uniform', method='singlestep')
-            - For **guided sampling with large guidance scale** by DPMs:
-                Use multistep DPM-Solver with `predict_x0 = True` and `order = 2`.
-                e.g.
-                    >>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=True)
-                    >>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=2,
-                            skip_type='time_uniform', method='multistep')
-        We support three types of `skip_type`:
-            - 'logSNR': uniform logSNR for the time steps. **Recommended for low-resolutional images**
-            - 'time_uniform': uniform time for the time steps. **Recommended for high-resolutional images**.
-            - 'time_quadratic': quadratic time for the time steps.
-        =====================================================
-        Args:
-            x: A pytorch tensor. The initial value at time `t_start`
-                e.g. if `t_start` == T, then `x` is a sample from the standard normal distribution.
-            steps: A `int`. The total number of function evaluations (NFE).
-            t_start: A `float`. The starting time of the sampling.
-                If `T` is None, we use self.noise_schedule.T (default is 1.0).
-            t_end: A `float`. The ending time of the sampling.
-                If `t_end` is None, we use 1. / self.noise_schedule.total_N.
-                e.g. if total_N == 1000, we have `t_end` == 1e-3.
-                For discrete-time DPMs:
-                    - We recommend `t_end` == 1. / self.noise_schedule.total_N.
-                For continuous-time DPMs:
-                    - We recommend `t_end` == 1e-3 when `steps` <= 15; and `t_end` == 1e-4 when `steps` > 15.
-            order: A `int`. The order of DPM-Solver.
-            skip_type: A `str`. The type for the spacing of the time steps. 'time_uniform' or 'logSNR' or 'time_quadratic'.
-            method: A `str`. The method for sampling. 'singlestep' or 'multistep' or 'singlestep_fixed' or 'adaptive'.
-            denoise_to_zero: A `bool`. Whether to denoise to time 0 at the final step.
-                Default is `False`. If `denoise_to_zero` is `True`, the total NFE is (`steps` + 1).
-                This trick is firstly proposed by DDPM (https://arxiv.org/abs/2006.11239) and
-                score_sde (https://arxiv.org/abs/2011.13456). Such trick can improve the FID
-                for diffusion models sampling by diffusion SDEs for low-resolutional images
-                (such as CIFAR-10). However, we observed that such trick does not matter for
-                high-resolutional images. As it needs an additional NFE, we do not recommend
-                it for high-resolutional images.
-            lower_order_final: A `bool`. Whether to use lower order solvers at the final steps.
-                Only valid for `method=multistep` and `steps < 15`. We empirically find that
-                this trick is a key to stabilizing the sampling by DPM-Solver with very few steps
-                (especially for steps <= 10). So we recommend to set it to be `True`.
-            solver_type: A `str`. The taylor expansion type for the solver. `dpm_solver` or `taylor`. We recommend `dpm_solver`.
-            atol: A `float`. The absolute tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
-            rtol: A `float`. The relative tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
-        Returns:
-            x_end: A pytorch tensor. The approximated solution at time `t_end`.
-        """
-        t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
-        t_T = self.noise_schedule.T if t_start is None else t_start
-        device = x.device
-        if method == 'adaptive':
-            with torch.no_grad():
-                x = self.dpm_solver_adaptive(x, order=order, t_T=t_T, t_0=t_0, atol=atol, rtol=rtol,
-                                             solver_type=solver_type)
-        elif method == 'multistep':
-            assert steps >= order
-            timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
-            assert timesteps.shape[0] - 1 == steps
-            with torch.no_grad():
-                vec_t = timesteps[0].expand((x.shape[0]))
-                model_prev_list = [self.model_fn(x, vec_t)]
-                t_prev_list = [vec_t]
-                # Init the first `order` values by lower order multistep DPM-Solver.
-                for init_order in tqdm(range(1, order), desc="DPM init order"):
-                    vec_t = timesteps[init_order].expand(x.shape[0])
-                    x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, init_order,
-                                                         solver_type=solver_type)
-                    model_prev_list.append(self.model_fn(x, vec_t))
-                    t_prev_list.append(vec_t)
-                # Compute the remaining values by `order`-th order multistep DPM-Solver.
-                for step in tqdm(range(order, steps + 1), desc="DPM multistep"):
-                    vec_t = timesteps[step].expand(x.shape[0])
-                    if lower_order_final and steps < 15:
-                        step_order = min(order, steps + 1 - step)
-                    else:
-                        step_order = order
-                    x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, step_order,
-                                                         solver_type=solver_type)
-                    for i in range(order - 1):
-                        t_prev_list[i] = t_prev_list[i + 1]
-                        model_prev_list[i] = model_prev_list[i + 1]
-                    t_prev_list[-1] = vec_t
-                    # We do not need to evaluate the final model value.
-                    if step < steps:
-                        model_prev_list[-1] = self.model_fn(x, vec_t)
-        elif method in ['singlestep', 'singlestep_fixed']:
-            if method == 'singlestep':
-                timesteps_outer, orders = self.get_orders_and_timesteps_for_singlestep_solver(steps=steps, order=order,
-                                                                                              skip_type=skip_type,
-                                                                                              t_T=t_T, t_0=t_0,
-                                                                                              device=device)
-            elif method == 'singlestep_fixed':
-                K = steps // order
-                orders = [order, ] * K
-                timesteps_outer = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=K, device=device)
-            for i, order in enumerate(orders):
-                t_T_inner, t_0_inner = timesteps_outer[i], timesteps_outer[i + 1]
-                timesteps_inner = self.get_time_steps(skip_type=skip_type, t_T=t_T_inner.item(), t_0=t_0_inner.item(),
-                                                      N=order, device=device)
-                lambda_inner = self.noise_schedule.marginal_lambda(timesteps_inner)
-                vec_s, vec_t = t_T_inner.tile(x.shape[0]), t_0_inner.tile(x.shape[0])
-                h = lambda_inner[-1] - lambda_inner[0]
-                r1 = None if order <= 1 else (lambda_inner[1] - lambda_inner[0]) / h
-                r2 = None if order <= 2 else (lambda_inner[2] - lambda_inner[0]) / h
-                x = self.singlestep_dpm_solver_update(x, vec_s, vec_t, order, solver_type=solver_type, r1=r1, r2=r2)
-        if denoise_to_zero:
-            x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0)
-        return x
-
-
-#############################################################
-# other utility functions
-#############################################################
-
-def interpolate_fn(x, xp, yp):
-    """
-    A piecewise linear function y = f(x), using xp and yp as keypoints.
-    We implement f(x) in a differentiable way (i.e. applicable for autograd).
-    The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
-    Args:
-        x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
-        xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
-        yp: PyTorch tensor with shape [C, K].
-    Returns:
-        The function values f(x), with shape [N, C].
-    """
-    N, K = x.shape[0], xp.shape[1]
-    all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
-    sorted_all_x, x_indices = torch.sort(all_x, dim=2)
-    x_idx = torch.argmin(x_indices, dim=2)
-    cand_start_idx = x_idx - 1
-    start_idx = torch.where(
-        torch.eq(x_idx, 0),
-        torch.tensor(1, device=x.device),
-        torch.where(
-            torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
-        ),
-    )
-    end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
-    start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
-    end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
-    start_idx2 = torch.where(
-        torch.eq(x_idx, 0),
-        torch.tensor(0, device=x.device),
-        torch.where(
-            torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
-        ),
-    )
-    y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
-    start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
-    end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
-    cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
-    return cand
-
-
-def expand_dims(v, dims):
-    """
-    Expand the tensor `v` to the dim `dims`.
-    Args:
-        `v`: a PyTorch tensor with shape [N].
-        `dim`: a `int`.
-    Returns:
-        a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
-    """
-    return v[(...,) + (None,) * (dims - 1)]
\ No newline at end of file
diff --git a/ldm/models/diffusion/dpm_solver/sampler.py b/ldm/models/diffusion/dpm_solver/sampler.py
deleted file mode 100644
index 7d137b8cf36718c1c58faa09f9dd919e5fb2977b..0000000000000000000000000000000000000000
--- a/ldm/models/diffusion/dpm_solver/sampler.py
+++ /dev/null
@@ -1,87 +0,0 @@
-"""SAMPLING ONLY."""
-import torch
-
-from .dpm_solver import NoiseScheduleVP, model_wrapper, DPM_Solver
-
-
-MODEL_TYPES = {
-    "eps": "noise",
-    "v": "v"
-}
-
-
-class DPMSolverSampler(object):
-    def __init__(self, model, **kwargs):
-        super().__init__()
-        self.model = model
-        to_torch = lambda x: x.clone().detach().to(torch.float32).to(model.device)
-        self.register_buffer('alphas_cumprod', to_torch(model.alphas_cumprod))
-
-    def register_buffer(self, name, attr):
-        if type(attr) == torch.Tensor:
-            if attr.device != torch.device("cuda"):
-                attr = attr.to(torch.device("cuda"))
-        setattr(self, name, attr)
-
-    @torch.no_grad()
-    def sample(self,
-               S,
-               batch_size,
-               shape,
-               conditioning=None,
-               callback=None,
-               normals_sequence=None,
-               img_callback=None,
-               quantize_x0=False,
-               eta=0.,
-               mask=None,
-               x0=None,
-               temperature=1.,
-               noise_dropout=0.,
-               score_corrector=None,
-               corrector_kwargs=None,
-               verbose=True,
-               x_T=None,
-               log_every_t=100,
-               unconditional_guidance_scale=1.,
-               unconditional_conditioning=None,
-               # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
-               **kwargs
-               ):
-        if conditioning is not None:
-            if isinstance(conditioning, dict):
-                cbs = conditioning[list(conditioning.keys())[0]].shape[0]
-                if cbs != batch_size:
-                    print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
-            else:
-                if conditioning.shape[0] != batch_size:
-                    print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
-
-        # sampling
-        C, H, W = shape
-        size = (batch_size, C, H, W)
-
-        print(f'Data shape for DPM-Solver sampling is {size}, sampling steps {S}')
-
-        device = self.model.betas.device
-        if x_T is None:
-            img = torch.randn(size, device=device)
-        else:
-            img = x_T
-
-        ns = NoiseScheduleVP('discrete', alphas_cumprod=self.alphas_cumprod)
-
-        model_fn = model_wrapper(
-            lambda x, t, c: self.model.apply_model(x, t, c),
-            ns,
-            model_type=MODEL_TYPES[self.model.parameterization],
-            guidance_type="classifier-free",
-            condition=conditioning,
-            unconditional_condition=unconditional_conditioning,
-            guidance_scale=unconditional_guidance_scale,
-        )
-
-        dpm_solver = DPM_Solver(model_fn, ns, predict_x0=True, thresholding=False)
-        x = dpm_solver.sample(img, steps=S, skip_type="time_uniform", method="multistep", order=2, lower_order_final=True)
-
-        return x.to(device), None
\ No newline at end of file
diff --git a/ldm/models/diffusion/plms.py b/ldm/models/diffusion/plms.py
deleted file mode 100644
index 7002a365d27168ced0a04e9a4d83e088f8284eae..0000000000000000000000000000000000000000
--- a/ldm/models/diffusion/plms.py
+++ /dev/null
@@ -1,244 +0,0 @@
-"""SAMPLING ONLY."""
-
-import torch
-import numpy as np
-from tqdm import tqdm
-from functools import partial
-
-from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
-from ldm.models.diffusion.sampling_util import norm_thresholding
-
-
-class PLMSSampler(object):
-    def __init__(self, model, schedule="linear", **kwargs):
-        super().__init__()
-        self.model = model
-        self.ddpm_num_timesteps = model.num_timesteps
-        self.schedule = schedule
-
-    def register_buffer(self, name, attr):
-        if type(attr) == torch.Tensor:
-            if attr.device != torch.device("cuda"):
-                attr = attr.to(torch.device("cuda"))
-        setattr(self, name, attr)
-
-    def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
-        if ddim_eta != 0:
-            raise ValueError('ddim_eta must be 0 for PLMS')
-        self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
-                                                  num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
-        alphas_cumprod = self.model.alphas_cumprod
-        assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
-        to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
-
-        self.register_buffer('betas', to_torch(self.model.betas))
-        self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
-        self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
-
-        # calculations for diffusion q(x_t | x_{t-1}) and others
-        self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
-        self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
-        self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
-        self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
-        self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
-
-        # ddim sampling parameters
-        ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
-                                                                                   ddim_timesteps=self.ddim_timesteps,
-                                                                                   eta=ddim_eta,verbose=verbose)
-        self.register_buffer('ddim_sigmas', ddim_sigmas)
-        self.register_buffer('ddim_alphas', ddim_alphas)
-        self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
-        self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
-        sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
-            (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
-                        1 - self.alphas_cumprod / self.alphas_cumprod_prev))
-        self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
-
-    @torch.no_grad()
-    def sample(self,
-               S,
-               batch_size,
-               shape,
-               conditioning=None,
-               callback=None,
-               normals_sequence=None,
-               img_callback=None,
-               quantize_x0=False,
-               eta=0.,
-               mask=None,
-               x0=None,
-               temperature=1.,
-               noise_dropout=0.,
-               score_corrector=None,
-               corrector_kwargs=None,
-               verbose=True,
-               x_T=None,
-               log_every_t=100,
-               unconditional_guidance_scale=1.,
-               unconditional_conditioning=None,
-               # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
-               dynamic_threshold=None,
-               **kwargs
-               ):
-        if conditioning is not None:
-            if isinstance(conditioning, dict):
-                cbs = conditioning[list(conditioning.keys())[0]].shape[0]
-                if cbs != batch_size:
-                    print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
-            else:
-                if conditioning.shape[0] != batch_size:
-                    print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
-
-        self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
-        # sampling
-        C, H, W = shape
-        size = (batch_size, C, H, W)
-        print(f'Data shape for PLMS sampling is {size}')
-
-        samples, intermediates = self.plms_sampling(conditioning, size,
-                                                    callback=callback,
-                                                    img_callback=img_callback,
-                                                    quantize_denoised=quantize_x0,
-                                                    mask=mask, x0=x0,
-                                                    ddim_use_original_steps=False,
-                                                    noise_dropout=noise_dropout,
-                                                    temperature=temperature,
-                                                    score_corrector=score_corrector,
-                                                    corrector_kwargs=corrector_kwargs,
-                                                    x_T=x_T,
-                                                    log_every_t=log_every_t,
-                                                    unconditional_guidance_scale=unconditional_guidance_scale,
-                                                    unconditional_conditioning=unconditional_conditioning,
-                                                    dynamic_threshold=dynamic_threshold,
-                                                    )
-        return samples, intermediates
-
-    @torch.no_grad()
-    def plms_sampling(self, cond, shape,
-                      x_T=None, ddim_use_original_steps=False,
-                      callback=None, timesteps=None, quantize_denoised=False,
-                      mask=None, x0=None, img_callback=None, log_every_t=100,
-                      temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
-                      unconditional_guidance_scale=1., unconditional_conditioning=None,
-                      dynamic_threshold=None):
-        device = self.model.betas.device
-        b = shape[0]
-        if x_T is None:
-            img = torch.randn(shape, device=device)
-        else:
-            img = x_T
-
-        if timesteps is None:
-            timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
-        elif timesteps is not None and not ddim_use_original_steps:
-            subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
-            timesteps = self.ddim_timesteps[:subset_end]
-
-        intermediates = {'x_inter': [img], 'pred_x0': [img]}
-        time_range = list(reversed(range(0,timesteps))) if ddim_use_original_steps else np.flip(timesteps)
-        total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
-        print(f"Running PLMS Sampling with {total_steps} timesteps")
-
-        iterator = tqdm(time_range, desc='PLMS Sampler', total=total_steps)
-        old_eps = []
-
-        for i, step in enumerate(iterator):
-            index = total_steps - i - 1
-            ts = torch.full((b,), step, device=device, dtype=torch.long)
-            ts_next = torch.full((b,), time_range[min(i + 1, len(time_range) - 1)], device=device, dtype=torch.long)
-
-            if mask is not None:
-                assert x0 is not None
-                img_orig = self.model.q_sample(x0, ts)  # TODO: deterministic forward pass?
-                img = img_orig * mask + (1. - mask) * img
-
-            outs = self.p_sample_plms(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
-                                      quantize_denoised=quantize_denoised, temperature=temperature,
-                                      noise_dropout=noise_dropout, score_corrector=score_corrector,
-                                      corrector_kwargs=corrector_kwargs,
-                                      unconditional_guidance_scale=unconditional_guidance_scale,
-                                      unconditional_conditioning=unconditional_conditioning,
-                                      old_eps=old_eps, t_next=ts_next,
-                                      dynamic_threshold=dynamic_threshold)
-            img, pred_x0, e_t = outs
-            old_eps.append(e_t)
-            if len(old_eps) >= 4:
-                old_eps.pop(0)
-            if callback: callback(i)
-            if img_callback: img_callback(pred_x0, i)
-
-            if index % log_every_t == 0 or index == total_steps - 1:
-                intermediates['x_inter'].append(img)
-                intermediates['pred_x0'].append(pred_x0)
-
-        return img, intermediates
-
-    @torch.no_grad()
-    def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
-                      temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
-                      unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None,
-                      dynamic_threshold=None):
-        b, *_, device = *x.shape, x.device
-
-        def get_model_output(x, t):
-            if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
-                e_t = self.model.apply_model(x, t, c)
-            else:
-                x_in = torch.cat([x] * 2)
-                t_in = torch.cat([t] * 2)
-                c_in = torch.cat([unconditional_conditioning, c])
-                e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
-                e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
-
-            if score_corrector is not None:
-                assert self.model.parameterization == "eps"
-                e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
-
-            return e_t
-
-        alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
-        alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
-        sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
-        sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
-
-        def get_x_prev_and_pred_x0(e_t, index):
-            # select parameters corresponding to the currently considered timestep
-            a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
-            a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
-            sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
-            sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
-
-            # current prediction for x_0
-            pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
-            if quantize_denoised:
-                pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
-            if dynamic_threshold is not None:
-                pred_x0 = norm_thresholding(pred_x0, dynamic_threshold)
-            # direction pointing to x_t
-            dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
-            noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
-            if noise_dropout > 0.:
-                noise = torch.nn.functional.dropout(noise, p=noise_dropout)
-            x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
-            return x_prev, pred_x0
-
-        e_t = get_model_output(x, t)
-        if len(old_eps) == 0:
-            # Pseudo Improved Euler (2nd order)
-            x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
-            e_t_next = get_model_output(x_prev, t_next)
-            e_t_prime = (e_t + e_t_next) / 2
-        elif len(old_eps) == 1:
-            # 2nd order Pseudo Linear Multistep (Adams-Bashforth)
-            e_t_prime = (3 * e_t - old_eps[-1]) / 2
-        elif len(old_eps) == 2:
-            # 3nd order Pseudo Linear Multistep (Adams-Bashforth)
-            e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
-        elif len(old_eps) >= 3:
-            # 4nd order Pseudo Linear Multistep (Adams-Bashforth)
-            e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
-
-        x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
-
-        return x_prev, pred_x0, e_t
diff --git a/ldm/models/diffusion/sampling_util.py b/ldm/models/diffusion/sampling_util.py
deleted file mode 100644
index 7eff02be6d7c54d43ee6680636ac0698dd3b3f33..0000000000000000000000000000000000000000
--- a/ldm/models/diffusion/sampling_util.py
+++ /dev/null
@@ -1,22 +0,0 @@
-import torch
-import numpy as np
-
-
-def append_dims(x, target_dims):
-    """Appends dimensions to the end of a tensor until it has target_dims dimensions.
-    From https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/utils.py"""
-    dims_to_append = target_dims - x.ndim
-    if dims_to_append < 0:
-        raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
-    return x[(...,) + (None,) * dims_to_append]
-
-
-def norm_thresholding(x0, value):
-    s = append_dims(x0.pow(2).flatten(1).mean(1).sqrt().clamp(min=value), x0.ndim)
-    return x0 * (value / s)
-
-
-def spatial_norm_thresholding(x0, value):
-    # b c h w
-    s = x0.pow(2).mean(1, keepdim=True).sqrt().clamp(min=value)
-    return x0 * (value / s)
\ No newline at end of file
diff --git a/ldm/modules/attention.py b/ldm/modules/attention.py
deleted file mode 100644
index d504d939f6a02cf45f028799d7d73b84500cee06..0000000000000000000000000000000000000000
--- a/ldm/modules/attention.py
+++ /dev/null
@@ -1,331 +0,0 @@
-from inspect import isfunction
-import math
-import torch
-import torch.nn.functional as F
-from torch import nn, einsum
-from einops import rearrange, repeat
-from typing import Optional, Any
-
-from ldm.modules.diffusionmodules.util import checkpoint
-
-
-try:
-    import xformers
-    import xformers.ops
-    XFORMERS_IS_AVAILBLE = True
-except:
-    XFORMERS_IS_AVAILBLE = False
-
-
-def exists(val):
-    return val is not None
-
-
-def uniq(arr):
-    return{el: True for el in arr}.keys()
-
-
-def default(val, d):
-    if exists(val):
-        return val
-    return d() if isfunction(d) else d
-
-
-def max_neg_value(t):
-    return -torch.finfo(t.dtype).max
-
-
-def init_(tensor):
-    dim = tensor.shape[-1]
-    std = 1 / math.sqrt(dim)
-    tensor.uniform_(-std, std)
-    return tensor
-
-
-# feedforward
-class GEGLU(nn.Module):
-    def __init__(self, dim_in, dim_out):
-        super().__init__()
-        self.proj = nn.Linear(dim_in, dim_out * 2)
-
-    def forward(self, x):
-        x, gate = self.proj(x).chunk(2, dim=-1)
-        return x * F.gelu(gate)
-
-
-class FeedForward(nn.Module):
-    def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
-        super().__init__()
-        inner_dim = int(dim * mult)
-        dim_out = default(dim_out, dim)
-        project_in = nn.Sequential(
-            nn.Linear(dim, inner_dim),
-            nn.GELU()
-        ) if not glu else GEGLU(dim, inner_dim)
-
-        self.net = nn.Sequential(
-            project_in,
-            nn.Dropout(dropout),
-            nn.Linear(inner_dim, dim_out)
-        )
-
-    def forward(self, x):
-        return self.net(x)
-
-
-def zero_module(module):
-    """
-    Zero out the parameters of a module and return it.
-    """
-    for p in module.parameters():
-        p.detach().zero_()
-    return module
-
-
-def Normalize(in_channels):
-    return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
-
-
-class SpatialSelfAttention(nn.Module):
-    def __init__(self, in_channels):
-        super().__init__()
-        self.in_channels = in_channels
-
-        self.norm = Normalize(in_channels)
-        self.q = torch.nn.Conv2d(in_channels,
-                                 in_channels,
-                                 kernel_size=1,
-                                 stride=1,
-                                 padding=0)
-        self.k = torch.nn.Conv2d(in_channels,
-                                 in_channels,
-                                 kernel_size=1,
-                                 stride=1,
-                                 padding=0)
-        self.v = torch.nn.Conv2d(in_channels,
-                                 in_channels,
-                                 kernel_size=1,
-                                 stride=1,
-                                 padding=0)
-        self.proj_out = torch.nn.Conv2d(in_channels,
-                                        in_channels,
-                                        kernel_size=1,
-                                        stride=1,
-                                        padding=0)
-
-    def forward(self, x):
-        h_ = x
-        h_ = self.norm(h_)
-        q = self.q(h_)
-        k = self.k(h_)
-        v = self.v(h_)
-
-        # compute attention
-        b,c,h,w = q.shape
-        q = rearrange(q, 'b c h w -> b (h w) c')
-        k = rearrange(k, 'b c h w -> b c (h w)')
-        w_ = torch.einsum('bij,bjk->bik', q, k)
-
-        w_ = w_ * (int(c)**(-0.5))
-        w_ = torch.nn.functional.softmax(w_, dim=2)
-
-        # attend to values
-        v = rearrange(v, 'b c h w -> b c (h w)')
-        w_ = rearrange(w_, 'b i j -> b j i')
-        h_ = torch.einsum('bij,bjk->bik', v, w_)
-        h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
-        h_ = self.proj_out(h_)
-
-        return x+h_
-
-
-class CrossAttention(nn.Module):
-    def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.):
-        super().__init__()
-        inner_dim = dim_head * heads
-        context_dim = default(context_dim, query_dim)
-
-        self.scale = dim_head ** -0.5
-        self.heads = heads
-
-        self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
-        self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
-        self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
-
-        self.to_out = nn.Sequential(
-            nn.Linear(inner_dim, query_dim),
-            nn.Dropout(dropout)
-        )
-
-    def forward(self, x, context=None, mask=None):
-        h = self.heads
-
-        q = self.to_q(x)
-        context = default(context, x)
-        k = self.to_k(context)
-        v = self.to_v(context)
-
-        q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
-
-        sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
-        del q, k
-
-        if exists(mask):
-            mask = rearrange(mask, 'b ... -> b (...)')
-            max_neg_value = -torch.finfo(sim.dtype).max
-            mask = repeat(mask, 'b j -> (b h) () j', h=h)
-            sim.masked_fill_(~mask, max_neg_value)
-
-        # attention, what we cannot get enough of
-        sim = sim.softmax(dim=-1)
-
-        out = einsum('b i j, b j d -> b i d', sim, v)
-        out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
-        return self.to_out(out)
-
-
-class MemoryEfficientCrossAttention(nn.Module):
-    # https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
-    def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
-        super().__init__()
-        print(f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using "
-              f"{heads} heads.")
-        inner_dim = dim_head * heads
-        context_dim = default(context_dim, query_dim)
-
-        self.heads = heads
-        self.dim_head = dim_head
-
-        self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
-        self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
-        self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
-
-        self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
-        self.attention_op: Optional[Any] = None
-
-    def forward(self, x, context=None, mask=None):
-        q = self.to_q(x)
-        context = default(context, x)
-        k = self.to_k(context)
-        v = self.to_v(context)
-
-        b, _, _ = q.shape
-        q, k, v = map(
-            lambda t: t.unsqueeze(3)
-            .reshape(b, t.shape[1], self.heads, self.dim_head)
-            .permute(0, 2, 1, 3)
-            .reshape(b * self.heads, t.shape[1], self.dim_head)
-            .contiguous(),
-            (q, k, v),
-        )
-
-        # actually compute the attention, what we cannot get enough of
-        out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
-
-        if exists(mask):
-            raise NotImplementedError
-        out = (
-            out.unsqueeze(0)
-            .reshape(b, self.heads, out.shape[1], self.dim_head)
-            .permute(0, 2, 1, 3)
-            .reshape(b, out.shape[1], self.heads * self.dim_head)
-        )
-        return self.to_out(out)
-
-
-class BasicTransformerBlock(nn.Module):
-    ATTENTION_MODES = {
-        "softmax": CrossAttention,  # vanilla attention
-        "softmax-xformers": MemoryEfficientCrossAttention
-    }
-    def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True,
-                 disable_self_attn=False):
-        super().__init__()
-        attn_mode = "softmax-xformers" if XFORMERS_IS_AVAILBLE else "softmax"
-        assert attn_mode in self.ATTENTION_MODES
-        attn_cls = self.ATTENTION_MODES[attn_mode]
-        self.disable_self_attn = disable_self_attn
-        self.attn1 = attn_cls(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
-                              context_dim=context_dim if self.disable_self_attn else None)  # is a self-attention if not self.disable_self_attn
-        self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
-        self.attn2 = attn_cls(query_dim=dim, context_dim=context_dim,
-                              heads=n_heads, dim_head=d_head, dropout=dropout)  # is self-attn if context is none
-        self.norm1 = nn.LayerNorm(dim)
-        self.norm2 = nn.LayerNorm(dim)
-        self.norm3 = nn.LayerNorm(dim)
-        self.checkpoint = checkpoint
-
-    def forward(self, x, context=None):
-        return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint)
-
-    def _forward(self, x, context=None):
-        x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) + x
-        x = self.attn2(self.norm2(x), context=context) + x
-        x = self.ff(self.norm3(x)) + x
-        return x
-
-
-class SpatialTransformer(nn.Module):
-    """
-    Transformer block for image-like data.
-    First, project the input (aka embedding)
-    and reshape to b, t, d.
-    Then apply standard transformer action.
-    Finally, reshape to image
-    NEW: use_linear for more efficiency instead of the 1x1 convs
-    """
-    def __init__(self, in_channels, n_heads, d_head,
-                 depth=1, dropout=0., context_dim=None,
-                 disable_self_attn=False, use_linear=False,
-                 use_checkpoint=True):
-        super().__init__()
-        if exists(context_dim) and not isinstance(context_dim, list):
-            context_dim = [context_dim]
-        self.in_channels = in_channels
-        inner_dim = n_heads * d_head
-        self.norm = Normalize(in_channels)
-        if not use_linear:
-            self.proj_in = nn.Conv2d(in_channels,
-                                     inner_dim,
-                                     kernel_size=1,
-                                     stride=1,
-                                     padding=0)
-        else:
-            self.proj_in = nn.Linear(in_channels, inner_dim)
-
-        self.transformer_blocks = nn.ModuleList(
-            [BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim[d],
-                                   disable_self_attn=disable_self_attn, checkpoint=use_checkpoint)
-                for d in range(depth)]
-        )
-        if not use_linear:
-            self.proj_out = zero_module(nn.Conv2d(inner_dim,
-                                                  in_channels,
-                                                  kernel_size=1,
-                                                  stride=1,
-                                                  padding=0))
-        else:
-            self.proj_out = zero_module(nn.Linear(in_channels, inner_dim))
-        self.use_linear = use_linear
-
-    def forward(self, x, context=None):
-        # note: if no context is given, cross-attention defaults to self-attention
-        if not isinstance(context, list):
-            context = [context]
-        b, c, h, w = x.shape
-        x_in = x
-        x = self.norm(x)
-        if not self.use_linear:
-            x = self.proj_in(x)
-        x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
-        if self.use_linear:
-            x = self.proj_in(x)
-        for i, block in enumerate(self.transformer_blocks):
-            x = block(x, context=context[i])
-        if self.use_linear:
-            x = self.proj_out(x)
-        x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
-        if not self.use_linear:
-            x = self.proj_out(x)
-        return x + x_in
-
diff --git a/ldm/modules/diffusionmodules/__init__.py b/ldm/modules/diffusionmodules/__init__.py
deleted file mode 100644
index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000
diff --git a/ldm/modules/diffusionmodules/model.py b/ldm/modules/diffusionmodules/model.py
deleted file mode 100644
index b089eebbe1676d8249005bb9def002ff5180715b..0000000000000000000000000000000000000000
--- a/ldm/modules/diffusionmodules/model.py
+++ /dev/null
@@ -1,852 +0,0 @@
-# pytorch_diffusion + derived encoder decoder
-import math
-import torch
-import torch.nn as nn
-import numpy as np
-from einops import rearrange
-from typing import Optional, Any
-
-from ldm.modules.attention import MemoryEfficientCrossAttention
-
-try:
-    import xformers
-    import xformers.ops
-    XFORMERS_IS_AVAILBLE = True
-except:
-    XFORMERS_IS_AVAILBLE = False
-    print("No module 'xformers'. Proceeding without it.")
-
-
-def get_timestep_embedding(timesteps, embedding_dim):
-    """
-    This matches the implementation in Denoising Diffusion Probabilistic Models:
-    From Fairseq.
-    Build sinusoidal embeddings.
-    This matches the implementation in tensor2tensor, but differs slightly
-    from the description in Section 3.5 of "Attention Is All You Need".
-    """
-    assert len(timesteps.shape) == 1
-
-    half_dim = embedding_dim // 2
-    emb = math.log(10000) / (half_dim - 1)
-    emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
-    emb = emb.to(device=timesteps.device)
-    emb = timesteps.float()[:, None] * emb[None, :]
-    emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
-    if embedding_dim % 2 == 1:  # zero pad
-        emb = torch.nn.functional.pad(emb, (0,1,0,0))
-    return emb
-
-
-def nonlinearity(x):
-    # swish
-    return x*torch.sigmoid(x)
-
-
-def Normalize(in_channels, num_groups=32):
-    return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
-
-
-class Upsample(nn.Module):
-    def __init__(self, in_channels, with_conv):
-        super().__init__()
-        self.with_conv = with_conv
-        if self.with_conv:
-            self.conv = torch.nn.Conv2d(in_channels,
-                                        in_channels,
-                                        kernel_size=3,
-                                        stride=1,
-                                        padding=1)
-
-    def forward(self, x):
-        x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
-        if self.with_conv:
-            x = self.conv(x)
-        return x
-
-
-class Downsample(nn.Module):
-    def __init__(self, in_channels, with_conv):
-        super().__init__()
-        self.with_conv = with_conv
-        if self.with_conv:
-            # no asymmetric padding in torch conv, must do it ourselves
-            self.conv = torch.nn.Conv2d(in_channels,
-                                        in_channels,
-                                        kernel_size=3,
-                                        stride=2,
-                                        padding=0)
-
-    def forward(self, x):
-        if self.with_conv:
-            pad = (0,1,0,1)
-            x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
-            x = self.conv(x)
-        else:
-            x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
-        return x
-
-
-class ResnetBlock(nn.Module):
-    def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
-                 dropout, temb_channels=512):
-        super().__init__()
-        self.in_channels = in_channels
-        out_channels = in_channels if out_channels is None else out_channels
-        self.out_channels = out_channels
-        self.use_conv_shortcut = conv_shortcut
-
-        self.norm1 = Normalize(in_channels)
-        self.conv1 = torch.nn.Conv2d(in_channels,
-                                     out_channels,
-                                     kernel_size=3,
-                                     stride=1,
-                                     padding=1)
-        if temb_channels > 0:
-            self.temb_proj = torch.nn.Linear(temb_channels,
-                                             out_channels)
-        self.norm2 = Normalize(out_channels)
-        self.dropout = torch.nn.Dropout(dropout)
-        self.conv2 = torch.nn.Conv2d(out_channels,
-                                     out_channels,
-                                     kernel_size=3,
-                                     stride=1,
-                                     padding=1)
-        if self.in_channels != self.out_channels:
-            if self.use_conv_shortcut:
-                self.conv_shortcut = torch.nn.Conv2d(in_channels,
-                                                     out_channels,
-                                                     kernel_size=3,
-                                                     stride=1,
-                                                     padding=1)
-            else:
-                self.nin_shortcut = torch.nn.Conv2d(in_channels,
-                                                    out_channels,
-                                                    kernel_size=1,
-                                                    stride=1,
-                                                    padding=0)
-
-    def forward(self, x, temb):
-        h = x
-        h = self.norm1(h)
-        h = nonlinearity(h)
-        h = self.conv1(h)
-
-        if temb is not None:
-            h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
-
-        h = self.norm2(h)
-        h = nonlinearity(h)
-        h = self.dropout(h)
-        h = self.conv2(h)
-
-        if self.in_channels != self.out_channels:
-            if self.use_conv_shortcut:
-                x = self.conv_shortcut(x)
-            else:
-                x = self.nin_shortcut(x)
-
-        return x+h
-
-
-class AttnBlock(nn.Module):
-    def __init__(self, in_channels):
-        super().__init__()
-        self.in_channels = in_channels
-
-        self.norm = Normalize(in_channels)
-        self.q = torch.nn.Conv2d(in_channels,
-                                 in_channels,
-                                 kernel_size=1,
-                                 stride=1,
-                                 padding=0)
-        self.k = torch.nn.Conv2d(in_channels,
-                                 in_channels,
-                                 kernel_size=1,
-                                 stride=1,
-                                 padding=0)
-        self.v = torch.nn.Conv2d(in_channels,
-                                 in_channels,
-                                 kernel_size=1,
-                                 stride=1,
-                                 padding=0)
-        self.proj_out = torch.nn.Conv2d(in_channels,
-                                        in_channels,
-                                        kernel_size=1,
-                                        stride=1,
-                                        padding=0)
-
-    def forward(self, x):
-        h_ = x
-        h_ = self.norm(h_)
-        q = self.q(h_)
-        k = self.k(h_)
-        v = self.v(h_)
-
-        # compute attention
-        b,c,h,w = q.shape
-        q = q.reshape(b,c,h*w)
-        q = q.permute(0,2,1)   # b,hw,c
-        k = k.reshape(b,c,h*w) # b,c,hw
-        w_ = torch.bmm(q,k)     # b,hw,hw    w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
-        w_ = w_ * (int(c)**(-0.5))
-        w_ = torch.nn.functional.softmax(w_, dim=2)
-
-        # attend to values
-        v = v.reshape(b,c,h*w)
-        w_ = w_.permute(0,2,1)   # b,hw,hw (first hw of k, second of q)
-        h_ = torch.bmm(v,w_)     # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
-        h_ = h_.reshape(b,c,h,w)
-
-        h_ = self.proj_out(h_)
-
-        return x+h_
-
-class MemoryEfficientAttnBlock(nn.Module):
-    """
-        Uses xformers efficient implementation,
-        see https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
-        Note: this is a single-head self-attention operation
-    """
-    #
-    def __init__(self, in_channels):
-        super().__init__()
-        self.in_channels = in_channels
-
-        self.norm = Normalize(in_channels)
-        self.q = torch.nn.Conv2d(in_channels,
-                                 in_channels,
-                                 kernel_size=1,
-                                 stride=1,
-                                 padding=0)
-        self.k = torch.nn.Conv2d(in_channels,
-                                 in_channels,
-                                 kernel_size=1,
-                                 stride=1,
-                                 padding=0)
-        self.v = torch.nn.Conv2d(in_channels,
-                                 in_channels,
-                                 kernel_size=1,
-                                 stride=1,
-                                 padding=0)
-        self.proj_out = torch.nn.Conv2d(in_channels,
-                                        in_channels,
-                                        kernel_size=1,
-                                        stride=1,
-                                        padding=0)
-        self.attention_op: Optional[Any] = None
-
-    def forward(self, x):
-        h_ = x
-        h_ = self.norm(h_)
-        q = self.q(h_)
-        k = self.k(h_)
-        v = self.v(h_)
-
-        # compute attention
-        B, C, H, W = q.shape
-        q, k, v = map(lambda x: rearrange(x, 'b c h w -> b (h w) c'), (q, k, v))
-
-        q, k, v = map(
-            lambda t: t.unsqueeze(3)
-            .reshape(B, t.shape[1], 1, C)
-            .permute(0, 2, 1, 3)
-            .reshape(B * 1, t.shape[1], C)
-            .contiguous(),
-            (q, k, v),
-        )
-        out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=self.attention_op)
-
-        out = (
-            out.unsqueeze(0)
-            .reshape(B, 1, out.shape[1], C)
-            .permute(0, 2, 1, 3)
-            .reshape(B, out.shape[1], C)
-        )
-        out = rearrange(out, 'b (h w) c -> b c h w', b=B, h=H, w=W, c=C)
-        out = self.proj_out(out)
-        return x+out
-
-
-class MemoryEfficientCrossAttentionWrapper(MemoryEfficientCrossAttention):
-    def forward(self, x, context=None, mask=None):
-        b, c, h, w = x.shape
-        x = rearrange(x, 'b c h w -> b (h w) c')
-        out = super().forward(x, context=context, mask=mask)
-        out = rearrange(out, 'b (h w) c -> b c h w', h=h, w=w, c=c)
-        return x + out
-
-
-def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
-    assert attn_type in ["vanilla", "vanilla-xformers", "memory-efficient-cross-attn", "linear", "none"], f'attn_type {attn_type} unknown'
-    if XFORMERS_IS_AVAILBLE and attn_type == "vanilla":
-        attn_type = "vanilla-xformers"
-    print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
-    if attn_type == "vanilla":
-        assert attn_kwargs is None
-        return AttnBlock(in_channels)
-    elif attn_type == "vanilla-xformers":
-        print(f"building MemoryEfficientAttnBlock with {in_channels} in_channels...")
-        return MemoryEfficientAttnBlock(in_channels)
-    elif type == "memory-efficient-cross-attn":
-        attn_kwargs["query_dim"] = in_channels
-        return MemoryEfficientCrossAttentionWrapper(**attn_kwargs)
-    elif attn_type == "none":
-        return nn.Identity(in_channels)
-    else:
-        raise NotImplementedError()
-
-
-class Model(nn.Module):
-    def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
-                 attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
-                 resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
-        super().__init__()
-        if use_linear_attn: attn_type = "linear"
-        self.ch = ch
-        self.temb_ch = self.ch*4
-        self.num_resolutions = len(ch_mult)
-        self.num_res_blocks = num_res_blocks
-        self.resolution = resolution
-        self.in_channels = in_channels
-
-        self.use_timestep = use_timestep
-        if self.use_timestep:
-            # timestep embedding
-            self.temb = nn.Module()
-            self.temb.dense = nn.ModuleList([
-                torch.nn.Linear(self.ch,
-                                self.temb_ch),
-                torch.nn.Linear(self.temb_ch,
-                                self.temb_ch),
-            ])
-
-        # downsampling
-        self.conv_in = torch.nn.Conv2d(in_channels,
-                                       self.ch,
-                                       kernel_size=3,
-                                       stride=1,
-                                       padding=1)
-
-        curr_res = resolution
-        in_ch_mult = (1,)+tuple(ch_mult)
-        self.down = nn.ModuleList()
-        for i_level in range(self.num_resolutions):
-            block = nn.ModuleList()
-            attn = nn.ModuleList()
-            block_in = ch*in_ch_mult[i_level]
-            block_out = ch*ch_mult[i_level]
-            for i_block in range(self.num_res_blocks):
-                block.append(ResnetBlock(in_channels=block_in,
-                                         out_channels=block_out,
-                                         temb_channels=self.temb_ch,
-                                         dropout=dropout))
-                block_in = block_out
-                if curr_res in attn_resolutions:
-                    attn.append(make_attn(block_in, attn_type=attn_type))
-            down = nn.Module()
-            down.block = block
-            down.attn = attn
-            if i_level != self.num_resolutions-1:
-                down.downsample = Downsample(block_in, resamp_with_conv)
-                curr_res = curr_res // 2
-            self.down.append(down)
-
-        # middle
-        self.mid = nn.Module()
-        self.mid.block_1 = ResnetBlock(in_channels=block_in,
-                                       out_channels=block_in,
-                                       temb_channels=self.temb_ch,
-                                       dropout=dropout)
-        self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
-        self.mid.block_2 = ResnetBlock(in_channels=block_in,
-                                       out_channels=block_in,
-                                       temb_channels=self.temb_ch,
-                                       dropout=dropout)
-
-        # upsampling
-        self.up = nn.ModuleList()
-        for i_level in reversed(range(self.num_resolutions)):
-            block = nn.ModuleList()
-            attn = nn.ModuleList()
-            block_out = ch*ch_mult[i_level]
-            skip_in = ch*ch_mult[i_level]
-            for i_block in range(self.num_res_blocks+1):
-                if i_block == self.num_res_blocks:
-                    skip_in = ch*in_ch_mult[i_level]
-                block.append(ResnetBlock(in_channels=block_in+skip_in,
-                                         out_channels=block_out,
-                                         temb_channels=self.temb_ch,
-                                         dropout=dropout))
-                block_in = block_out
-                if curr_res in attn_resolutions:
-                    attn.append(make_attn(block_in, attn_type=attn_type))
-            up = nn.Module()
-            up.block = block
-            up.attn = attn
-            if i_level != 0:
-                up.upsample = Upsample(block_in, resamp_with_conv)
-                curr_res = curr_res * 2
-            self.up.insert(0, up) # prepend to get consistent order
-
-        # end
-        self.norm_out = Normalize(block_in)
-        self.conv_out = torch.nn.Conv2d(block_in,
-                                        out_ch,
-                                        kernel_size=3,
-                                        stride=1,
-                                        padding=1)
-
-    def forward(self, x, t=None, context=None):
-        #assert x.shape[2] == x.shape[3] == self.resolution
-        if context is not None:
-            # assume aligned context, cat along channel axis
-            x = torch.cat((x, context), dim=1)
-        if self.use_timestep:
-            # timestep embedding
-            assert t is not None
-            temb = get_timestep_embedding(t, self.ch)
-            temb = self.temb.dense[0](temb)
-            temb = nonlinearity(temb)
-            temb = self.temb.dense[1](temb)
-        else:
-            temb = None
-
-        # downsampling
-        hs = [self.conv_in(x)]
-        for i_level in range(self.num_resolutions):
-            for i_block in range(self.num_res_blocks):
-                h = self.down[i_level].block[i_block](hs[-1], temb)
-                if len(self.down[i_level].attn) > 0:
-                    h = self.down[i_level].attn[i_block](h)
-                hs.append(h)
-            if i_level != self.num_resolutions-1:
-                hs.append(self.down[i_level].downsample(hs[-1]))
-
-        # middle
-        h = hs[-1]
-        h = self.mid.block_1(h, temb)
-        h = self.mid.attn_1(h)
-        h = self.mid.block_2(h, temb)
-
-        # upsampling
-        for i_level in reversed(range(self.num_resolutions)):
-            for i_block in range(self.num_res_blocks+1):
-                h = self.up[i_level].block[i_block](
-                    torch.cat([h, hs.pop()], dim=1), temb)
-                if len(self.up[i_level].attn) > 0:
-                    h = self.up[i_level].attn[i_block](h)
-            if i_level != 0:
-                h = self.up[i_level].upsample(h)
-
-        # end
-        h = self.norm_out(h)
-        h = nonlinearity(h)
-        h = self.conv_out(h)
-        return h
-
-    def get_last_layer(self):
-        return self.conv_out.weight
-
-
-class Encoder(nn.Module):
-    def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
-                 attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
-                 resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
-                 **ignore_kwargs):
-        super().__init__()
-        if use_linear_attn: attn_type = "linear"
-        self.ch = ch
-        self.temb_ch = 0
-        self.num_resolutions = len(ch_mult)
-        self.num_res_blocks = num_res_blocks
-        self.resolution = resolution
-        self.in_channels = in_channels
-
-        # downsampling
-        self.conv_in = torch.nn.Conv2d(in_channels,
-                                       self.ch,
-                                       kernel_size=3,
-                                       stride=1,
-                                       padding=1)
-
-        curr_res = resolution
-        in_ch_mult = (1,)+tuple(ch_mult)
-        self.in_ch_mult = in_ch_mult
-        self.down = nn.ModuleList()
-        for i_level in range(self.num_resolutions):
-            block = nn.ModuleList()
-            attn = nn.ModuleList()
-            block_in = ch*in_ch_mult[i_level]
-            block_out = ch*ch_mult[i_level]
-            for i_block in range(self.num_res_blocks):
-                block.append(ResnetBlock(in_channels=block_in,
-                                         out_channels=block_out,
-                                         temb_channels=self.temb_ch,
-                                         dropout=dropout))
-                block_in = block_out
-                if curr_res in attn_resolutions:
-                    attn.append(make_attn(block_in, attn_type=attn_type))
-            down = nn.Module()
-            down.block = block
-            down.attn = attn
-            if i_level != self.num_resolutions-1:
-                down.downsample = Downsample(block_in, resamp_with_conv)
-                curr_res = curr_res // 2
-            self.down.append(down)
-
-        # middle
-        self.mid = nn.Module()
-        self.mid.block_1 = ResnetBlock(in_channels=block_in,
-                                       out_channels=block_in,
-                                       temb_channels=self.temb_ch,
-                                       dropout=dropout)
-        self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
-        self.mid.block_2 = ResnetBlock(in_channels=block_in,
-                                       out_channels=block_in,
-                                       temb_channels=self.temb_ch,
-                                       dropout=dropout)
-
-        # end
-        self.norm_out = Normalize(block_in)
-        self.conv_out = torch.nn.Conv2d(block_in,
-                                        2*z_channels if double_z else z_channels,
-                                        kernel_size=3,
-                                        stride=1,
-                                        padding=1)
-
-    def forward(self, x):
-        # timestep embedding
-        temb = None
-
-        # downsampling
-        hs = [self.conv_in(x)]
-        for i_level in range(self.num_resolutions):
-            for i_block in range(self.num_res_blocks):
-                h = self.down[i_level].block[i_block](hs[-1], temb)
-                if len(self.down[i_level].attn) > 0:
-                    h = self.down[i_level].attn[i_block](h)
-                hs.append(h)
-            if i_level != self.num_resolutions-1:
-                hs.append(self.down[i_level].downsample(hs[-1]))
-
-        # middle
-        h = hs[-1]
-        h = self.mid.block_1(h, temb)
-        h = self.mid.attn_1(h)
-        h = self.mid.block_2(h, temb)
-
-        # end
-        h = self.norm_out(h)
-        h = nonlinearity(h)
-        h = self.conv_out(h)
-        return h
-
-
-class Decoder(nn.Module):
-    def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
-                 attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
-                 resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
-                 attn_type="vanilla", **ignorekwargs):
-        super().__init__()
-        if use_linear_attn: attn_type = "linear"
-        self.ch = ch
-        self.temb_ch = 0
-        self.num_resolutions = len(ch_mult)
-        self.num_res_blocks = num_res_blocks
-        self.resolution = resolution
-        self.in_channels = in_channels
-        self.give_pre_end = give_pre_end
-        self.tanh_out = tanh_out
-
-        # compute in_ch_mult, block_in and curr_res at lowest res
-        in_ch_mult = (1,)+tuple(ch_mult)
-        block_in = ch*ch_mult[self.num_resolutions-1]
-        curr_res = resolution // 2**(self.num_resolutions-1)
-        self.z_shape = (1,z_channels,curr_res,curr_res)
-        print("Working with z of shape {} = {} dimensions.".format(
-            self.z_shape, np.prod(self.z_shape)))
-
-        # z to block_in
-        self.conv_in = torch.nn.Conv2d(z_channels,
-                                       block_in,
-                                       kernel_size=3,
-                                       stride=1,
-                                       padding=1)
-
-        # middle
-        self.mid = nn.Module()
-        self.mid.block_1 = ResnetBlock(in_channels=block_in,
-                                       out_channels=block_in,
-                                       temb_channels=self.temb_ch,
-                                       dropout=dropout)
-        self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
-        self.mid.block_2 = ResnetBlock(in_channels=block_in,
-                                       out_channels=block_in,
-                                       temb_channels=self.temb_ch,
-                                       dropout=dropout)
-
-        # upsampling
-        self.up = nn.ModuleList()
-        for i_level in reversed(range(self.num_resolutions)):
-            block = nn.ModuleList()
-            attn = nn.ModuleList()
-            block_out = ch*ch_mult[i_level]
-            for i_block in range(self.num_res_blocks+1):
-                block.append(ResnetBlock(in_channels=block_in,
-                                         out_channels=block_out,
-                                         temb_channels=self.temb_ch,
-                                         dropout=dropout))
-                block_in = block_out
-                if curr_res in attn_resolutions:
-                    attn.append(make_attn(block_in, attn_type=attn_type))
-            up = nn.Module()
-            up.block = block
-            up.attn = attn
-            if i_level != 0:
-                up.upsample = Upsample(block_in, resamp_with_conv)
-                curr_res = curr_res * 2
-            self.up.insert(0, up) # prepend to get consistent order
-
-        # end
-        self.norm_out = Normalize(block_in)
-        self.conv_out = torch.nn.Conv2d(block_in,
-                                        out_ch,
-                                        kernel_size=3,
-                                        stride=1,
-                                        padding=1)
-
-    def forward(self, z):
-        #assert z.shape[1:] == self.z_shape[1:]
-        self.last_z_shape = z.shape
-
-        # timestep embedding
-        temb = None
-
-        # z to block_in
-        h = self.conv_in(z)
-
-        # middle
-        h = self.mid.block_1(h, temb)
-        h = self.mid.attn_1(h)
-        h = self.mid.block_2(h, temb)
-
-        # upsampling
-        for i_level in reversed(range(self.num_resolutions)):
-            for i_block in range(self.num_res_blocks+1):
-                h = self.up[i_level].block[i_block](h, temb)
-                if len(self.up[i_level].attn) > 0:
-                    h = self.up[i_level].attn[i_block](h)
-            if i_level != 0:
-                h = self.up[i_level].upsample(h)
-
-        # end
-        if self.give_pre_end:
-            return h
-
-        h = self.norm_out(h)
-        h = nonlinearity(h)
-        h = self.conv_out(h)
-        if self.tanh_out:
-            h = torch.tanh(h)
-        return h
-
-
-class SimpleDecoder(nn.Module):
-    def __init__(self, in_channels, out_channels, *args, **kwargs):
-        super().__init__()
-        self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
-                                     ResnetBlock(in_channels=in_channels,
-                                                 out_channels=2 * in_channels,
-                                                 temb_channels=0, dropout=0.0),
-                                     ResnetBlock(in_channels=2 * in_channels,
-                                                out_channels=4 * in_channels,
-                                                temb_channels=0, dropout=0.0),
-                                     ResnetBlock(in_channels=4 * in_channels,
-                                                out_channels=2 * in_channels,
-                                                temb_channels=0, dropout=0.0),
-                                     nn.Conv2d(2*in_channels, in_channels, 1),
-                                     Upsample(in_channels, with_conv=True)])
-        # end
-        self.norm_out = Normalize(in_channels)
-        self.conv_out = torch.nn.Conv2d(in_channels,
-                                        out_channels,
-                                        kernel_size=3,
-                                        stride=1,
-                                        padding=1)
-
-    def forward(self, x):
-        for i, layer in enumerate(self.model):
-            if i in [1,2,3]:
-                x = layer(x, None)
-            else:
-                x = layer(x)
-
-        h = self.norm_out(x)
-        h = nonlinearity(h)
-        x = self.conv_out(h)
-        return x
-
-
-class UpsampleDecoder(nn.Module):
-    def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution,
-                 ch_mult=(2,2), dropout=0.0):
-        super().__init__()
-        # upsampling
-        self.temb_ch = 0
-        self.num_resolutions = len(ch_mult)
-        self.num_res_blocks = num_res_blocks
-        block_in = in_channels
-        curr_res = resolution // 2 ** (self.num_resolutions - 1)
-        self.res_blocks = nn.ModuleList()
-        self.upsample_blocks = nn.ModuleList()
-        for i_level in range(self.num_resolutions):
-            res_block = []
-            block_out = ch * ch_mult[i_level]
-            for i_block in range(self.num_res_blocks + 1):
-                res_block.append(ResnetBlock(in_channels=block_in,
-                                         out_channels=block_out,
-                                         temb_channels=self.temb_ch,
-                                         dropout=dropout))
-                block_in = block_out
-            self.res_blocks.append(nn.ModuleList(res_block))
-            if i_level != self.num_resolutions - 1:
-                self.upsample_blocks.append(Upsample(block_in, True))
-                curr_res = curr_res * 2
-
-        # end
-        self.norm_out = Normalize(block_in)
-        self.conv_out = torch.nn.Conv2d(block_in,
-                                        out_channels,
-                                        kernel_size=3,
-                                        stride=1,
-                                        padding=1)
-
-    def forward(self, x):
-        # upsampling
-        h = x
-        for k, i_level in enumerate(range(self.num_resolutions)):
-            for i_block in range(self.num_res_blocks + 1):
-                h = self.res_blocks[i_level][i_block](h, None)
-            if i_level != self.num_resolutions - 1:
-                h = self.upsample_blocks[k](h)
-        h = self.norm_out(h)
-        h = nonlinearity(h)
-        h = self.conv_out(h)
-        return h
-
-
-class LatentRescaler(nn.Module):
-    def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
-        super().__init__()
-        # residual block, interpolate, residual block
-        self.factor = factor
-        self.conv_in = nn.Conv2d(in_channels,
-                                 mid_channels,
-                                 kernel_size=3,
-                                 stride=1,
-                                 padding=1)
-        self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
-                                                     out_channels=mid_channels,
-                                                     temb_channels=0,
-                                                     dropout=0.0) for _ in range(depth)])
-        self.attn = AttnBlock(mid_channels)
-        self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
-                                                     out_channels=mid_channels,
-                                                     temb_channels=0,
-                                                     dropout=0.0) for _ in range(depth)])
-
-        self.conv_out = nn.Conv2d(mid_channels,
-                                  out_channels,
-                                  kernel_size=1,
-                                  )
-
-    def forward(self, x):
-        x = self.conv_in(x)
-        for block in self.res_block1:
-            x = block(x, None)
-        x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor))))
-        x = self.attn(x)
-        for block in self.res_block2:
-            x = block(x, None)
-        x = self.conv_out(x)
-        return x
-
-
-class MergedRescaleEncoder(nn.Module):
-    def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks,
-                 attn_resolutions, dropout=0.0, resamp_with_conv=True,
-                 ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1):
-        super().__init__()
-        intermediate_chn = ch * ch_mult[-1]
-        self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult,
-                               z_channels=intermediate_chn, double_z=False, resolution=resolution,
-                               attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv,
-                               out_ch=None)
-        self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn,
-                                       mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth)
-
-    def forward(self, x):
-        x = self.encoder(x)
-        x = self.rescaler(x)
-        return x
-
-
-class MergedRescaleDecoder(nn.Module):
-    def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8),
-                 dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1):
-        super().__init__()
-        tmp_chn = z_channels*ch_mult[-1]
-        self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout,
-                               resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks,
-                               ch_mult=ch_mult, resolution=resolution, ch=ch)
-        self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn,
-                                       out_channels=tmp_chn, depth=rescale_module_depth)
-
-    def forward(self, x):
-        x = self.rescaler(x)
-        x = self.decoder(x)
-        return x
-
-
-class Upsampler(nn.Module):
-    def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
-        super().__init__()
-        assert out_size >= in_size
-        num_blocks = int(np.log2(out_size//in_size))+1
-        factor_up = 1.+ (out_size % in_size)
-        print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}")
-        self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels,
-                                       out_channels=in_channels)
-        self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2,
-                               attn_resolutions=[], in_channels=None, ch=in_channels,
-                               ch_mult=[ch_mult for _ in range(num_blocks)])
-
-    def forward(self, x):
-        x = self.rescaler(x)
-        x = self.decoder(x)
-        return x
-
-
-class Resize(nn.Module):
-    def __init__(self, in_channels=None, learned=False, mode="bilinear"):
-        super().__init__()
-        self.with_conv = learned
-        self.mode = mode
-        if self.with_conv:
-            print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
-            raise NotImplementedError()
-            assert in_channels is not None
-            # no asymmetric padding in torch conv, must do it ourselves
-            self.conv = torch.nn.Conv2d(in_channels,
-                                        in_channels,
-                                        kernel_size=4,
-                                        stride=2,
-                                        padding=1)
-
-    def forward(self, x, scale_factor=1.0):
-        if scale_factor==1.0:
-            return x
-        else:
-            x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor)
-        return x
diff --git a/ldm/modules/diffusionmodules/openaimodel.py b/ldm/modules/diffusionmodules/openaimodel.py
deleted file mode 100644
index 7df6b5abfe8eff07f0c8e8703ba8aee90d45984b..0000000000000000000000000000000000000000
--- a/ldm/modules/diffusionmodules/openaimodel.py
+++ /dev/null
@@ -1,786 +0,0 @@
-from abc import abstractmethod
-import math
-
-import numpy as np
-import torch as th
-import torch.nn as nn
-import torch.nn.functional as F
-
-from ldm.modules.diffusionmodules.util import (
-    checkpoint,
-    conv_nd,
-    linear,
-    avg_pool_nd,
-    zero_module,
-    normalization,
-    timestep_embedding,
-)
-from ldm.modules.attention import SpatialTransformer
-from ldm.util import exists
-
-
-# dummy replace
-def convert_module_to_f16(x):
-    pass
-
-def convert_module_to_f32(x):
-    pass
-
-
-## go
-class AttentionPool2d(nn.Module):
-    """
-    Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
-    """
-
-    def __init__(
-        self,
-        spacial_dim: int,
-        embed_dim: int,
-        num_heads_channels: int,
-        output_dim: int = None,
-    ):
-        super().__init__()
-        self.positional_embedding = nn.Parameter(th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5)
-        self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
-        self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
-        self.num_heads = embed_dim // num_heads_channels
-        self.attention = QKVAttention(self.num_heads)
-
-    def forward(self, x):
-        b, c, *_spatial = x.shape
-        x = x.reshape(b, c, -1)  # NC(HW)
-        x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1)  # NC(HW+1)
-        x = x + self.positional_embedding[None, :, :].to(x.dtype)  # NC(HW+1)
-        x = self.qkv_proj(x)
-        x = self.attention(x)
-        x = self.c_proj(x)
-        return x[:, :, 0]
-
-
-class TimestepBlock(nn.Module):
-    """
-    Any module where forward() takes timestep embeddings as a second argument.
-    """
-
-    @abstractmethod
-    def forward(self, x, emb):
-        """
-        Apply the module to `x` given `emb` timestep embeddings.
-        """
-
-
-class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
-    """
-    A sequential module that passes timestep embeddings to the children that
-    support it as an extra input.
-    """
-
-    def forward(self, x, emb, context=None):
-        for layer in self:
-            if isinstance(layer, TimestepBlock):
-                x = layer(x, emb)
-            elif isinstance(layer, SpatialTransformer):
-                x = layer(x, context)
-            else:
-                x = layer(x)
-        return x
-
-
-class Upsample(nn.Module):
-    """
-    An upsampling layer with an optional convolution.
-    :param channels: channels in the inputs and outputs.
-    :param use_conv: a bool determining if a convolution is applied.
-    :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
-                 upsampling occurs in the inner-two dimensions.
-    """
-
-    def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
-        super().__init__()
-        self.channels = channels
-        self.out_channels = out_channels or channels
-        self.use_conv = use_conv
-        self.dims = dims
-        if use_conv:
-            self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
-
-    def forward(self, x):
-        assert x.shape[1] == self.channels
-        if self.dims == 3:
-            x = F.interpolate(
-                x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
-            )
-        else:
-            x = F.interpolate(x, scale_factor=2, mode="nearest")
-        if self.use_conv:
-            x = self.conv(x)
-        return x
-
-class TransposedUpsample(nn.Module):
-    'Learned 2x upsampling without padding'
-    def __init__(self, channels, out_channels=None, ks=5):
-        super().__init__()
-        self.channels = channels
-        self.out_channels = out_channels or channels
-
-        self.up = nn.ConvTranspose2d(self.channels,self.out_channels,kernel_size=ks,stride=2)
-
-    def forward(self,x):
-        return self.up(x)
-
-
-class Downsample(nn.Module):
-    """
-    A downsampling layer with an optional convolution.
-    :param channels: channels in the inputs and outputs.
-    :param use_conv: a bool determining if a convolution is applied.
-    :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
-                 downsampling occurs in the inner-two dimensions.
-    """
-
-    def __init__(self, channels, use_conv, dims=2, out_channels=None,padding=1):
-        super().__init__()
-        self.channels = channels
-        self.out_channels = out_channels or channels
-        self.use_conv = use_conv
-        self.dims = dims
-        stride = 2 if dims != 3 else (1, 2, 2)
-        if use_conv:
-            self.op = conv_nd(
-                dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
-            )
-        else:
-            assert self.channels == self.out_channels
-            self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
-
-    def forward(self, x):
-        assert x.shape[1] == self.channels
-        return self.op(x)
-
-
-class ResBlock(TimestepBlock):
-    """
-    A residual block that can optionally change the number of channels.
-    :param channels: the number of input channels.
-    :param emb_channels: the number of timestep embedding channels.
-    :param dropout: the rate of dropout.
-    :param out_channels: if specified, the number of out channels.
-    :param use_conv: if True and out_channels is specified, use a spatial
-        convolution instead of a smaller 1x1 convolution to change the
-        channels in the skip connection.
-    :param dims: determines if the signal is 1D, 2D, or 3D.
-    :param use_checkpoint: if True, use gradient checkpointing on this module.
-    :param up: if True, use this block for upsampling.
-    :param down: if True, use this block for downsampling.
-    """
-
-    def __init__(
-        self,
-        channels,
-        emb_channels,
-        dropout,
-        out_channels=None,
-        use_conv=False,
-        use_scale_shift_norm=False,
-        dims=2,
-        use_checkpoint=False,
-        up=False,
-        down=False,
-    ):
-        super().__init__()
-        self.channels = channels
-        self.emb_channels = emb_channels
-        self.dropout = dropout
-        self.out_channels = out_channels or channels
-        self.use_conv = use_conv
-        self.use_checkpoint = use_checkpoint
-        self.use_scale_shift_norm = use_scale_shift_norm
-
-        self.in_layers = nn.Sequential(
-            normalization(channels),
-            nn.SiLU(),
-            conv_nd(dims, channels, self.out_channels, 3, padding=1),
-        )
-
-        self.updown = up or down
-
-        if up:
-            self.h_upd = Upsample(channels, False, dims)
-            self.x_upd = Upsample(channels, False, dims)
-        elif down:
-            self.h_upd = Downsample(channels, False, dims)
-            self.x_upd = Downsample(channels, False, dims)
-        else:
-            self.h_upd = self.x_upd = nn.Identity()
-
-        self.emb_layers = nn.Sequential(
-            nn.SiLU(),
-            linear(
-                emb_channels,
-                2 * self.out_channels if use_scale_shift_norm else self.out_channels,
-            ),
-        )
-        self.out_layers = nn.Sequential(
-            normalization(self.out_channels),
-            nn.SiLU(),
-            nn.Dropout(p=dropout),
-            zero_module(
-                conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
-            ),
-        )
-
-        if self.out_channels == channels:
-            self.skip_connection = nn.Identity()
-        elif use_conv:
-            self.skip_connection = conv_nd(
-                dims, channels, self.out_channels, 3, padding=1
-            )
-        else:
-            self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
-
-    def forward(self, x, emb):
-        """
-        Apply the block to a Tensor, conditioned on a timestep embedding.
-        :param x: an [N x C x ...] Tensor of features.
-        :param emb: an [N x emb_channels] Tensor of timestep embeddings.
-        :return: an [N x C x ...] Tensor of outputs.
-        """
-        return checkpoint(
-            self._forward, (x, emb), self.parameters(), self.use_checkpoint
-        )
-
-
-    def _forward(self, x, emb):
-        if self.updown:
-            in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
-            h = in_rest(x)
-            h = self.h_upd(h)
-            x = self.x_upd(x)
-            h = in_conv(h)
-        else:
-            h = self.in_layers(x)
-        emb_out = self.emb_layers(emb).type(h.dtype)
-        while len(emb_out.shape) < len(h.shape):
-            emb_out = emb_out[..., None]
-        if self.use_scale_shift_norm:
-            out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
-            scale, shift = th.chunk(emb_out, 2, dim=1)
-            h = out_norm(h) * (1 + scale) + shift
-            h = out_rest(h)
-        else:
-            h = h + emb_out
-            h = self.out_layers(h)
-        return self.skip_connection(x) + h
-
-
-class AttentionBlock(nn.Module):
-    """
-    An attention block that allows spatial positions to attend to each other.
-    Originally ported from here, but adapted to the N-d case.
-    https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
-    """
-
-    def __init__(
-        self,
-        channels,
-        num_heads=1,
-        num_head_channels=-1,
-        use_checkpoint=False,
-        use_new_attention_order=False,
-    ):
-        super().__init__()
-        self.channels = channels
-        if num_head_channels == -1:
-            self.num_heads = num_heads
-        else:
-            assert (
-                channels % num_head_channels == 0
-            ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
-            self.num_heads = channels // num_head_channels
-        self.use_checkpoint = use_checkpoint
-        self.norm = normalization(channels)
-        self.qkv = conv_nd(1, channels, channels * 3, 1)
-        if use_new_attention_order:
-            # split qkv before split heads
-            self.attention = QKVAttention(self.num_heads)
-        else:
-            # split heads before split qkv
-            self.attention = QKVAttentionLegacy(self.num_heads)
-
-        self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
-
-    def forward(self, x):
-        return checkpoint(self._forward, (x,), self.parameters(), True)   # TODO: check checkpoint usage, is True # TODO: fix the .half call!!!
-        #return pt_checkpoint(self._forward, x)  # pytorch
-
-    def _forward(self, x):
-        b, c, *spatial = x.shape
-        x = x.reshape(b, c, -1)
-        qkv = self.qkv(self.norm(x))
-        h = self.attention(qkv)
-        h = self.proj_out(h)
-        return (x + h).reshape(b, c, *spatial)
-
-
-def count_flops_attn(model, _x, y):
-    """
-    A counter for the `thop` package to count the operations in an
-    attention operation.
-    Meant to be used like:
-        macs, params = thop.profile(
-            model,
-            inputs=(inputs, timestamps),
-            custom_ops={QKVAttention: QKVAttention.count_flops},
-        )
-    """
-    b, c, *spatial = y[0].shape
-    num_spatial = int(np.prod(spatial))
-    # We perform two matmuls with the same number of ops.
-    # The first computes the weight matrix, the second computes
-    # the combination of the value vectors.
-    matmul_ops = 2 * b * (num_spatial ** 2) * c
-    model.total_ops += th.DoubleTensor([matmul_ops])
-
-
-class QKVAttentionLegacy(nn.Module):
-    """
-    A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
-    """
-
-    def __init__(self, n_heads):
-        super().__init__()
-        self.n_heads = n_heads
-
-    def forward(self, qkv):
-        """
-        Apply QKV attention.
-        :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
-        :return: an [N x (H * C) x T] tensor after attention.
-        """
-        bs, width, length = qkv.shape
-        assert width % (3 * self.n_heads) == 0
-        ch = width // (3 * self.n_heads)
-        q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
-        scale = 1 / math.sqrt(math.sqrt(ch))
-        weight = th.einsum(
-            "bct,bcs->bts", q * scale, k * scale
-        )  # More stable with f16 than dividing afterwards
-        weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
-        a = th.einsum("bts,bcs->bct", weight, v)
-        return a.reshape(bs, -1, length)
-
-    @staticmethod
-    def count_flops(model, _x, y):
-        return count_flops_attn(model, _x, y)
-
-
-class QKVAttention(nn.Module):
-    """
-    A module which performs QKV attention and splits in a different order.
-    """
-
-    def __init__(self, n_heads):
-        super().__init__()
-        self.n_heads = n_heads
-
-    def forward(self, qkv):
-        """
-        Apply QKV attention.
-        :param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
-        :return: an [N x (H * C) x T] tensor after attention.
-        """
-        bs, width, length = qkv.shape
-        assert width % (3 * self.n_heads) == 0
-        ch = width // (3 * self.n_heads)
-        q, k, v = qkv.chunk(3, dim=1)
-        scale = 1 / math.sqrt(math.sqrt(ch))
-        weight = th.einsum(
-            "bct,bcs->bts",
-            (q * scale).view(bs * self.n_heads, ch, length),
-            (k * scale).view(bs * self.n_heads, ch, length),
-        )  # More stable with f16 than dividing afterwards
-        weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
-        a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
-        return a.reshape(bs, -1, length)
-
-    @staticmethod
-    def count_flops(model, _x, y):
-        return count_flops_attn(model, _x, y)
-
-
-class UNetModel(nn.Module):
-    """
-    The full UNet model with attention and timestep embedding.
-    :param in_channels: channels in the input Tensor.
-    :param model_channels: base channel count for the model.
-    :param out_channels: channels in the output Tensor.
-    :param num_res_blocks: number of residual blocks per downsample.
-    :param attention_resolutions: a collection of downsample rates at which
-        attention will take place. May be a set, list, or tuple.
-        For example, if this contains 4, then at 4x downsampling, attention
-        will be used.
-    :param dropout: the dropout probability.
-    :param channel_mult: channel multiplier for each level of the UNet.
-    :param conv_resample: if True, use learned convolutions for upsampling and
-        downsampling.
-    :param dims: determines if the signal is 1D, 2D, or 3D.
-    :param num_classes: if specified (as an int), then this model will be
-        class-conditional with `num_classes` classes.
-    :param use_checkpoint: use gradient checkpointing to reduce memory usage.
-    :param num_heads: the number of attention heads in each attention layer.
-    :param num_heads_channels: if specified, ignore num_heads and instead use
-                               a fixed channel width per attention head.
-    :param num_heads_upsample: works with num_heads to set a different number
-                               of heads for upsampling. Deprecated.
-    :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
-    :param resblock_updown: use residual blocks for up/downsampling.
-    :param use_new_attention_order: use a different attention pattern for potentially
-                                    increased efficiency.
-    """
-
-    def __init__(
-        self,
-        image_size,
-        in_channels,
-        model_channels,
-        out_channels,
-        num_res_blocks,
-        attention_resolutions,
-        dropout=0,
-        channel_mult=(1, 2, 4, 8),
-        conv_resample=True,
-        dims=2,
-        num_classes=None,
-        use_checkpoint=False,
-        use_fp16=False,
-        num_heads=-1,
-        num_head_channels=-1,
-        num_heads_upsample=-1,
-        use_scale_shift_norm=False,
-        resblock_updown=False,
-        use_new_attention_order=False,
-        use_spatial_transformer=False,    # custom transformer support
-        transformer_depth=1,              # custom transformer support
-        context_dim=None,                 # custom transformer support
-        n_embed=None,                     # custom support for prediction of discrete ids into codebook of first stage vq model
-        legacy=True,
-        disable_self_attentions=None,
-        num_attention_blocks=None,
-        disable_middle_self_attn=False,
-        use_linear_in_transformer=False,
-    ):
-        super().__init__()
-        if use_spatial_transformer:
-            assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
-
-        if context_dim is not None:
-            assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
-            from omegaconf.listconfig import ListConfig
-            if type(context_dim) == ListConfig:
-                context_dim = list(context_dim)
-
-        if num_heads_upsample == -1:
-            num_heads_upsample = num_heads
-
-        if num_heads == -1:
-            assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
-
-        if num_head_channels == -1:
-            assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
-
-        self.image_size = image_size
-        self.in_channels = in_channels
-        self.model_channels = model_channels
-        self.out_channels = out_channels
-        if isinstance(num_res_blocks, int):
-            self.num_res_blocks = len(channel_mult) * [num_res_blocks]
-        else:
-            if len(num_res_blocks) != len(channel_mult):
-                raise ValueError("provide num_res_blocks either as an int (globally constant) or "
-                                 "as a list/tuple (per-level) with the same length as channel_mult")
-            self.num_res_blocks = num_res_blocks
-        if disable_self_attentions is not None:
-            # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
-            assert len(disable_self_attentions) == len(channel_mult)
-        if num_attention_blocks is not None:
-            assert len(num_attention_blocks) == len(self.num_res_blocks)
-            assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
-            print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
-                  f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
-                  f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
-                  f"attention will still not be set.")
-
-        self.attention_resolutions = attention_resolutions
-        self.dropout = dropout
-        self.channel_mult = channel_mult
-        self.conv_resample = conv_resample
-        self.num_classes = num_classes
-        self.use_checkpoint = use_checkpoint
-        self.dtype = th.float16 if use_fp16 else th.float32
-        self.num_heads = num_heads
-        self.num_head_channels = num_head_channels
-        self.num_heads_upsample = num_heads_upsample
-        self.predict_codebook_ids = n_embed is not None
-
-        time_embed_dim = model_channels * 4
-        self.time_embed = nn.Sequential(
-            linear(model_channels, time_embed_dim),
-            nn.SiLU(),
-            linear(time_embed_dim, time_embed_dim),
-        )
-
-        if self.num_classes is not None:
-            if isinstance(self.num_classes, int):
-                self.label_emb = nn.Embedding(num_classes, time_embed_dim)
-            elif self.num_classes == "continuous":
-                print("setting up linear c_adm embedding layer")
-                self.label_emb = nn.Linear(1, time_embed_dim)
-            else:
-                raise ValueError()
-
-        self.input_blocks = nn.ModuleList(
-            [
-                TimestepEmbedSequential(
-                    conv_nd(dims, in_channels, model_channels, 3, padding=1)
-                )
-            ]
-        )
-        self._feature_size = model_channels
-        input_block_chans = [model_channels]
-        ch = model_channels
-        ds = 1
-        for level, mult in enumerate(channel_mult):
-            for nr in range(self.num_res_blocks[level]):
-                layers = [
-                    ResBlock(
-                        ch,
-                        time_embed_dim,
-                        dropout,
-                        out_channels=mult * model_channels,
-                        dims=dims,
-                        use_checkpoint=use_checkpoint,
-                        use_scale_shift_norm=use_scale_shift_norm,
-                    )
-                ]
-                ch = mult * model_channels
-                if ds in attention_resolutions:
-                    if num_head_channels == -1:
-                        dim_head = ch // num_heads
-                    else:
-                        num_heads = ch // num_head_channels
-                        dim_head = num_head_channels
-                    if legacy:
-                        #num_heads = 1
-                        dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
-                    if exists(disable_self_attentions):
-                        disabled_sa = disable_self_attentions[level]
-                    else:
-                        disabled_sa = False
-
-                    if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
-                        layers.append(
-                            AttentionBlock(
-                                ch,
-                                use_checkpoint=use_checkpoint,
-                                num_heads=num_heads,
-                                num_head_channels=dim_head,
-                                use_new_attention_order=use_new_attention_order,
-                            ) if not use_spatial_transformer else SpatialTransformer(
-                                ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
-                                disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
-                                use_checkpoint=use_checkpoint
-                            )
-                        )
-                self.input_blocks.append(TimestepEmbedSequential(*layers))
-                self._feature_size += ch
-                input_block_chans.append(ch)
-            if level != len(channel_mult) - 1:
-                out_ch = ch
-                self.input_blocks.append(
-                    TimestepEmbedSequential(
-                        ResBlock(
-                            ch,
-                            time_embed_dim,
-                            dropout,
-                            out_channels=out_ch,
-                            dims=dims,
-                            use_checkpoint=use_checkpoint,
-                            use_scale_shift_norm=use_scale_shift_norm,
-                            down=True,
-                        )
-                        if resblock_updown
-                        else Downsample(
-                            ch, conv_resample, dims=dims, out_channels=out_ch
-                        )
-                    )
-                )
-                ch = out_ch
-                input_block_chans.append(ch)
-                ds *= 2
-                self._feature_size += ch
-
-        if num_head_channels == -1:
-            dim_head = ch // num_heads
-        else:
-            num_heads = ch // num_head_channels
-            dim_head = num_head_channels
-        if legacy:
-            #num_heads = 1
-            dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
-        self.middle_block = TimestepEmbedSequential(
-            ResBlock(
-                ch,
-                time_embed_dim,
-                dropout,
-                dims=dims,
-                use_checkpoint=use_checkpoint,
-                use_scale_shift_norm=use_scale_shift_norm,
-            ),
-            AttentionBlock(
-                ch,
-                use_checkpoint=use_checkpoint,
-                num_heads=num_heads,
-                num_head_channels=dim_head,
-                use_new_attention_order=use_new_attention_order,
-            ) if not use_spatial_transformer else SpatialTransformer(  # always uses a self-attn
-                            ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
-                            disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
-                            use_checkpoint=use_checkpoint
-                        ),
-            ResBlock(
-                ch,
-                time_embed_dim,
-                dropout,
-                dims=dims,
-                use_checkpoint=use_checkpoint,
-                use_scale_shift_norm=use_scale_shift_norm,
-            ),
-        )
-        self._feature_size += ch
-
-        self.output_blocks = nn.ModuleList([])
-        for level, mult in list(enumerate(channel_mult))[::-1]:
-            for i in range(self.num_res_blocks[level] + 1):
-                ich = input_block_chans.pop()
-                layers = [
-                    ResBlock(
-                        ch + ich,
-                        time_embed_dim,
-                        dropout,
-                        out_channels=model_channels * mult,
-                        dims=dims,
-                        use_checkpoint=use_checkpoint,
-                        use_scale_shift_norm=use_scale_shift_norm,
-                    )
-                ]
-                ch = model_channels * mult
-                if ds in attention_resolutions:
-                    if num_head_channels == -1:
-                        dim_head = ch // num_heads
-                    else:
-                        num_heads = ch // num_head_channels
-                        dim_head = num_head_channels
-                    if legacy:
-                        #num_heads = 1
-                        dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
-                    if exists(disable_self_attentions):
-                        disabled_sa = disable_self_attentions[level]
-                    else:
-                        disabled_sa = False
-
-                    if not exists(num_attention_blocks) or i < num_attention_blocks[level]:
-                        layers.append(
-                            AttentionBlock(
-                                ch,
-                                use_checkpoint=use_checkpoint,
-                                num_heads=num_heads_upsample,
-                                num_head_channels=dim_head,
-                                use_new_attention_order=use_new_attention_order,
-                            ) if not use_spatial_transformer else SpatialTransformer(
-                                ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
-                                disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
-                                use_checkpoint=use_checkpoint
-                            )
-                        )
-                if level and i == self.num_res_blocks[level]:
-                    out_ch = ch
-                    layers.append(
-                        ResBlock(
-                            ch,
-                            time_embed_dim,
-                            dropout,
-                            out_channels=out_ch,
-                            dims=dims,
-                            use_checkpoint=use_checkpoint,
-                            use_scale_shift_norm=use_scale_shift_norm,
-                            up=True,
-                        )
-                        if resblock_updown
-                        else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
-                    )
-                    ds //= 2
-                self.output_blocks.append(TimestepEmbedSequential(*layers))
-                self._feature_size += ch
-
-        self.out = nn.Sequential(
-            normalization(ch),
-            nn.SiLU(),
-            zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
-        )
-        if self.predict_codebook_ids:
-            self.id_predictor = nn.Sequential(
-            normalization(ch),
-            conv_nd(dims, model_channels, n_embed, 1),
-            #nn.LogSoftmax(dim=1)  # change to cross_entropy and produce non-normalized logits
-        )
-
-    def convert_to_fp16(self):
-        """
-        Convert the torso of the model to float16.
-        """
-        self.input_blocks.apply(convert_module_to_f16)
-        self.middle_block.apply(convert_module_to_f16)
-        self.output_blocks.apply(convert_module_to_f16)
-
-    def convert_to_fp32(self):
-        """
-        Convert the torso of the model to float32.
-        """
-        self.input_blocks.apply(convert_module_to_f32)
-        self.middle_block.apply(convert_module_to_f32)
-        self.output_blocks.apply(convert_module_to_f32)
-
-    def forward(self, x, timesteps=None, context=None, y=None,**kwargs):
-        """
-        Apply the model to an input batch.
-        :param x: an [N x C x ...] Tensor of inputs.
-        :param timesteps: a 1-D batch of timesteps.
-        :param context: conditioning plugged in via crossattn
-        :param y: an [N] Tensor of labels, if class-conditional.
-        :return: an [N x C x ...] Tensor of outputs.
-        """
-        assert (y is not None) == (
-            self.num_classes is not None
-        ), "must specify y if and only if the model is class-conditional"
-        hs = []
-        t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
-        emb = self.time_embed(t_emb)
-
-        if self.num_classes is not None:
-            assert y.shape[0] == x.shape[0]
-            emb = emb + self.label_emb(y)
-
-        h = x.type(self.dtype)
-        for module in self.input_blocks:
-            h = module(h, emb, context)
-            hs.append(h)
-        h = self.middle_block(h, emb, context)
-        for module in self.output_blocks:
-            h = th.cat([h, hs.pop()], dim=1)
-            h = module(h, emb, context)
-        h = h.type(x.dtype)
-        if self.predict_codebook_ids:
-            return self.id_predictor(h)
-        else:
-            return self.out(h)
diff --git a/ldm/modules/diffusionmodules/upscaling.py b/ldm/modules/diffusionmodules/upscaling.py
deleted file mode 100644
index 03816662098ce1ffac79bd939b892e867ab91988..0000000000000000000000000000000000000000
--- a/ldm/modules/diffusionmodules/upscaling.py
+++ /dev/null
@@ -1,81 +0,0 @@
-import torch
-import torch.nn as nn
-import numpy as np
-from functools import partial
-
-from ldm.modules.diffusionmodules.util import extract_into_tensor, make_beta_schedule
-from ldm.util import default
-
-
-class AbstractLowScaleModel(nn.Module):
-    # for concatenating a downsampled image to the latent representation
-    def __init__(self, noise_schedule_config=None):
-        super(AbstractLowScaleModel, self).__init__()
-        if noise_schedule_config is not None:
-            self.register_schedule(**noise_schedule_config)
-
-    def register_schedule(self, beta_schedule="linear", timesteps=1000,
-                          linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
-        betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
-                                   cosine_s=cosine_s)
-        alphas = 1. - betas
-        alphas_cumprod = np.cumprod(alphas, axis=0)
-        alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
-
-        timesteps, = betas.shape
-        self.num_timesteps = int(timesteps)
-        self.linear_start = linear_start
-        self.linear_end = linear_end
-        assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
-
-        to_torch = partial(torch.tensor, dtype=torch.float32)
-
-        self.register_buffer('betas', to_torch(betas))
-        self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
-        self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
-
-        # calculations for diffusion q(x_t | x_{t-1}) and others
-        self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
-        self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
-        self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
-        self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
-        self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
-
-    def q_sample(self, x_start, t, noise=None):
-        noise = default(noise, lambda: torch.randn_like(x_start))
-        return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
-                extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
-
-    def forward(self, x):
-        return x, None
-
-    def decode(self, x):
-        return x
-
-
-class SimpleImageConcat(AbstractLowScaleModel):
-    # no noise level conditioning
-    def __init__(self):
-        super(SimpleImageConcat, self).__init__(noise_schedule_config=None)
-        self.max_noise_level = 0
-
-    def forward(self, x):
-        # fix to constant noise level
-        return x, torch.zeros(x.shape[0], device=x.device).long()
-
-
-class ImageConcatWithNoiseAugmentation(AbstractLowScaleModel):
-    def __init__(self, noise_schedule_config, max_noise_level=1000, to_cuda=False):
-        super().__init__(noise_schedule_config=noise_schedule_config)
-        self.max_noise_level = max_noise_level
-
-    def forward(self, x, noise_level=None):
-        if noise_level is None:
-            noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long()
-        else:
-            assert isinstance(noise_level, torch.Tensor)
-        z = self.q_sample(x, noise_level)
-        return z, noise_level
-
-
-
diff --git a/ldm/modules/diffusionmodules/util.py b/ldm/modules/diffusionmodules/util.py
deleted file mode 100644
index 637363dfe34799e70cfdbcd11445212df9d9ca1f..0000000000000000000000000000000000000000
--- a/ldm/modules/diffusionmodules/util.py
+++ /dev/null
@@ -1,270 +0,0 @@
-# adopted from
-# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
-# and
-# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
-# and
-# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
-#
-# thanks!
-
-
-import os
-import math
-import torch
-import torch.nn as nn
-import numpy as np
-from einops import repeat
-
-from ldm.util import instantiate_from_config
-
-
-def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
-    if schedule == "linear":
-        betas = (
-                torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
-        )
-
-    elif schedule == "cosine":
-        timesteps = (
-                torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
-        )
-        alphas = timesteps / (1 + cosine_s) * np.pi / 2
-        alphas = torch.cos(alphas).pow(2)
-        alphas = alphas / alphas[0]
-        betas = 1 - alphas[1:] / alphas[:-1]
-        betas = np.clip(betas, a_min=0, a_max=0.999)
-
-    elif schedule == "sqrt_linear":
-        betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
-    elif schedule == "sqrt":
-        betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
-    else:
-        raise ValueError(f"schedule '{schedule}' unknown.")
-    return betas.numpy()
-
-
-def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
-    if ddim_discr_method == 'uniform':
-        c = num_ddpm_timesteps // num_ddim_timesteps
-        ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
-    elif ddim_discr_method == 'quad':
-        ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
-    else:
-        raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
-
-    # assert ddim_timesteps.shape[0] == num_ddim_timesteps
-    # add one to get the final alpha values right (the ones from first scale to data during sampling)
-    steps_out = ddim_timesteps + 1
-    if verbose:
-        print(f'Selected timesteps for ddim sampler: {steps_out}')
-    return steps_out
-
-
-def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
-    # select alphas for computing the variance schedule
-    alphas = alphacums[ddim_timesteps]
-    alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
-
-    # according the the formula provided in https://arxiv.org/abs/2010.02502
-    sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
-    if verbose:
-        print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
-        print(f'For the chosen value of eta, which is {eta}, '
-              f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
-    return sigmas, alphas, alphas_prev
-
-
-def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
-    """
-    Create a beta schedule that discretizes the given alpha_t_bar function,
-    which defines the cumulative product of (1-beta) over time from t = [0,1].
-    :param num_diffusion_timesteps: the number of betas to produce.
-    :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
-                      produces the cumulative product of (1-beta) up to that
-                      part of the diffusion process.
-    :param max_beta: the maximum beta to use; use values lower than 1 to
-                     prevent singularities.
-    """
-    betas = []
-    for i in range(num_diffusion_timesteps):
-        t1 = i / num_diffusion_timesteps
-        t2 = (i + 1) / num_diffusion_timesteps
-        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
-    return np.array(betas)
-
-
-def extract_into_tensor(a, t, x_shape):
-    b, *_ = t.shape
-    out = a.gather(-1, t)
-    return out.reshape(b, *((1,) * (len(x_shape) - 1)))
-
-
-def checkpoint(func, inputs, params, flag):
-    """
-    Evaluate a function without caching intermediate activations, allowing for
-    reduced memory at the expense of extra compute in the backward pass.
-    :param func: the function to evaluate.
-    :param inputs: the argument sequence to pass to `func`.
-    :param params: a sequence of parameters `func` depends on but does not
-                   explicitly take as arguments.
-    :param flag: if False, disable gradient checkpointing.
-    """
-    if flag:
-        args = tuple(inputs) + tuple(params)
-        return CheckpointFunction.apply(func, len(inputs), *args)
-    else:
-        return func(*inputs)
-
-
-class CheckpointFunction(torch.autograd.Function):
-    @staticmethod
-    def forward(ctx, run_function, length, *args):
-        ctx.run_function = run_function
-        ctx.input_tensors = list(args[:length])
-        ctx.input_params = list(args[length:])
-        ctx.gpu_autocast_kwargs = {"enabled": torch.is_autocast_enabled(),
-                                   "dtype": torch.get_autocast_gpu_dtype(),
-                                   "cache_enabled": torch.is_autocast_cache_enabled()}
-        with torch.no_grad():
-            output_tensors = ctx.run_function(*ctx.input_tensors)
-        return output_tensors
-
-    @staticmethod
-    def backward(ctx, *output_grads):
-        ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
-        with torch.enable_grad(), \
-                torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs):
-            # Fixes a bug where the first op in run_function modifies the
-            # Tensor storage in place, which is not allowed for detach()'d
-            # Tensors.
-            shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
-            output_tensors = ctx.run_function(*shallow_copies)
-        input_grads = torch.autograd.grad(
-            output_tensors,
-            ctx.input_tensors + ctx.input_params,
-            output_grads,
-            allow_unused=True,
-        )
-        del ctx.input_tensors
-        del ctx.input_params
-        del output_tensors
-        return (None, None) + input_grads
-
-
-def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
-    """
-    Create sinusoidal timestep embeddings.
-    :param timesteps: a 1-D Tensor of N indices, one per batch element.
-                      These may be fractional.
-    :param dim: the dimension of the output.
-    :param max_period: controls the minimum frequency of the embeddings.
-    :return: an [N x dim] Tensor of positional embeddings.
-    """
-    if not repeat_only:
-        half = dim // 2
-        freqs = torch.exp(
-            -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
-        ).to(device=timesteps.device)
-        args = timesteps[:, None].float() * freqs[None]
-        embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
-        if dim % 2:
-            embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
-    else:
-        embedding = repeat(timesteps, 'b -> b d', d=dim)
-    return embedding
-
-
-def zero_module(module):
-    """
-    Zero out the parameters of a module and return it.
-    """
-    for p in module.parameters():
-        p.detach().zero_()
-    return module
-
-
-def scale_module(module, scale):
-    """
-    Scale the parameters of a module and return it.
-    """
-    for p in module.parameters():
-        p.detach().mul_(scale)
-    return module
-
-
-def mean_flat(tensor):
-    """
-    Take the mean over all non-batch dimensions.
-    """
-    return tensor.mean(dim=list(range(1, len(tensor.shape))))
-
-
-def normalization(channels):
-    """
-    Make a standard normalization layer.
-    :param channels: number of input channels.
-    :return: an nn.Module for normalization.
-    """
-    return GroupNorm32(32, channels)
-
-
-# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
-class SiLU(nn.Module):
-    def forward(self, x):
-        return x * torch.sigmoid(x)
-
-
-class GroupNorm32(nn.GroupNorm):
-    def forward(self, x):
-        return super().forward(x.float()).type(x.dtype)
-
-def conv_nd(dims, *args, **kwargs):
-    """
-    Create a 1D, 2D, or 3D convolution module.
-    """
-    if dims == 1:
-        return nn.Conv1d(*args, **kwargs)
-    elif dims == 2:
-        return nn.Conv2d(*args, **kwargs)
-    elif dims == 3:
-        return nn.Conv3d(*args, **kwargs)
-    raise ValueError(f"unsupported dimensions: {dims}")
-
-
-def linear(*args, **kwargs):
-    """
-    Create a linear module.
-    """
-    return nn.Linear(*args, **kwargs)
-
-
-def avg_pool_nd(dims, *args, **kwargs):
-    """
-    Create a 1D, 2D, or 3D average pooling module.
-    """
-    if dims == 1:
-        return nn.AvgPool1d(*args, **kwargs)
-    elif dims == 2:
-        return nn.AvgPool2d(*args, **kwargs)
-    elif dims == 3:
-        return nn.AvgPool3d(*args, **kwargs)
-    raise ValueError(f"unsupported dimensions: {dims}")
-
-
-class HybridConditioner(nn.Module):
-
-    def __init__(self, c_concat_config, c_crossattn_config):
-        super().__init__()
-        self.concat_conditioner = instantiate_from_config(c_concat_config)
-        self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
-
-    def forward(self, c_concat, c_crossattn):
-        c_concat = self.concat_conditioner(c_concat)
-        c_crossattn = self.crossattn_conditioner(c_crossattn)
-        return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
-
-
-def noise_like(shape, device, repeat=False):
-    repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
-    noise = lambda: torch.randn(shape, device=device)
-    return repeat_noise() if repeat else noise()
\ No newline at end of file
diff --git a/ldm/modules/distributions/__init__.py b/ldm/modules/distributions/__init__.py
deleted file mode 100644
index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000
diff --git a/ldm/modules/distributions/distributions.py b/ldm/modules/distributions/distributions.py
deleted file mode 100644
index f2b8ef901130efc171aa69742ca0244d94d3f2e9..0000000000000000000000000000000000000000
--- a/ldm/modules/distributions/distributions.py
+++ /dev/null
@@ -1,92 +0,0 @@
-import torch
-import numpy as np
-
-
-class AbstractDistribution:
-    def sample(self):
-        raise NotImplementedError()
-
-    def mode(self):
-        raise NotImplementedError()
-
-
-class DiracDistribution(AbstractDistribution):
-    def __init__(self, value):
-        self.value = value
-
-    def sample(self):
-        return self.value
-
-    def mode(self):
-        return self.value
-
-
-class DiagonalGaussianDistribution(object):
-    def __init__(self, parameters, deterministic=False):
-        self.parameters = parameters
-        self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
-        self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
-        self.deterministic = deterministic
-        self.std = torch.exp(0.5 * self.logvar)
-        self.var = torch.exp(self.logvar)
-        if self.deterministic:
-            self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
-
-    def sample(self):
-        x = self.mean + self.std * torch.randn(self.mean.shape).to(device=self.parameters.device)
-        return x
-
-    def kl(self, other=None):
-        if self.deterministic:
-            return torch.Tensor([0.])
-        else:
-            if other is None:
-                return 0.5 * torch.sum(torch.pow(self.mean, 2)
-                                       + self.var - 1.0 - self.logvar,
-                                       dim=[1, 2, 3])
-            else:
-                return 0.5 * torch.sum(
-                    torch.pow(self.mean - other.mean, 2) / other.var
-                    + self.var / other.var - 1.0 - self.logvar + other.logvar,
-                    dim=[1, 2, 3])
-
-    def nll(self, sample, dims=[1,2,3]):
-        if self.deterministic:
-            return torch.Tensor([0.])
-        logtwopi = np.log(2.0 * np.pi)
-        return 0.5 * torch.sum(
-            logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
-            dim=dims)
-
-    def mode(self):
-        return self.mean
-
-
-def normal_kl(mean1, logvar1, mean2, logvar2):
-    """
-    source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
-    Compute the KL divergence between two gaussians.
-    Shapes are automatically broadcasted, so batches can be compared to
-    scalars, among other use cases.
-    """
-    tensor = None
-    for obj in (mean1, logvar1, mean2, logvar2):
-        if isinstance(obj, torch.Tensor):
-            tensor = obj
-            break
-    assert tensor is not None, "at least one argument must be a Tensor"
-
-    # Force variances to be Tensors. Broadcasting helps convert scalars to
-    # Tensors, but it does not work for torch.exp().
-    logvar1, logvar2 = [
-        x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
-        for x in (logvar1, logvar2)
-    ]
-
-    return 0.5 * (
-        -1.0
-        + logvar2
-        - logvar1
-        + torch.exp(logvar1 - logvar2)
-        + ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
-    )
diff --git a/ldm/modules/ema.py b/ldm/modules/ema.py
deleted file mode 100644
index bded25019b9bcbcd0260f0b8185f8c7859ca58c4..0000000000000000000000000000000000000000
--- a/ldm/modules/ema.py
+++ /dev/null
@@ -1,80 +0,0 @@
-import torch
-from torch import nn
-
-
-class LitEma(nn.Module):
-    def __init__(self, model, decay=0.9999, use_num_upates=True):
-        super().__init__()
-        if decay < 0.0 or decay > 1.0:
-            raise ValueError('Decay must be between 0 and 1')
-
-        self.m_name2s_name = {}
-        self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32))
-        self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int) if use_num_upates
-        else torch.tensor(-1, dtype=torch.int))
-
-        for name, p in model.named_parameters():
-            if p.requires_grad:
-                # remove as '.'-character is not allowed in buffers
-                s_name = name.replace('.', '')
-                self.m_name2s_name.update({name: s_name})
-                self.register_buffer(s_name, p.clone().detach().data)
-
-        self.collected_params = []
-
-    def reset_num_updates(self):
-        del self.num_updates
-        self.register_buffer('num_updates', torch.tensor(0, dtype=torch.int))
-
-    def forward(self, model):
-        decay = self.decay
-
-        if self.num_updates >= 0:
-            self.num_updates += 1
-            decay = min(self.decay, (1 + self.num_updates) / (10 + self.num_updates))
-
-        one_minus_decay = 1.0 - decay
-
-        with torch.no_grad():
-            m_param = dict(model.named_parameters())
-            shadow_params = dict(self.named_buffers())
-
-            for key in m_param:
-                if m_param[key].requires_grad:
-                    sname = self.m_name2s_name[key]
-                    shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
-                    shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key]))
-                else:
-                    assert not key in self.m_name2s_name
-
-    def copy_to(self, model):
-        m_param = dict(model.named_parameters())
-        shadow_params = dict(self.named_buffers())
-        for key in m_param:
-            if m_param[key].requires_grad:
-                m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
-            else:
-                assert not key in self.m_name2s_name
-
-    def store(self, parameters):
-        """
-        Save the current parameters for restoring later.
-        Args:
-          parameters: Iterable of `torch.nn.Parameter`; the parameters to be
-            temporarily stored.
-        """
-        self.collected_params = [param.clone() for param in parameters]
-
-    def restore(self, parameters):
-        """
-        Restore the parameters stored with the `store` method.
-        Useful to validate the model with EMA parameters without affecting the
-        original optimization process. Store the parameters before the
-        `copy_to` method. After validation (or model saving), use this to
-        restore the former parameters.
-        Args:
-          parameters: Iterable of `torch.nn.Parameter`; the parameters to be
-            updated with the stored parameters.
-        """
-        for c_param, param in zip(self.collected_params, parameters):
-            param.data.copy_(c_param.data)
diff --git a/ldm/modules/encoders/__init__.py b/ldm/modules/encoders/__init__.py
deleted file mode 100644
index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000
diff --git a/ldm/modules/encoders/modules.py b/ldm/modules/encoders/modules.py
deleted file mode 100644
index 4edd5496b9e668ea72a5be39db9cca94b6a42f9b..0000000000000000000000000000000000000000
--- a/ldm/modules/encoders/modules.py
+++ /dev/null
@@ -1,213 +0,0 @@
-import torch
-import torch.nn as nn
-from torch.utils.checkpoint import checkpoint
-
-from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel
-
-import open_clip
-from ldm.util import default, count_params
-
-
-class AbstractEncoder(nn.Module):
-    def __init__(self):
-        super().__init__()
-
-    def encode(self, *args, **kwargs):
-        raise NotImplementedError
-
-
-class IdentityEncoder(AbstractEncoder):
-
-    def encode(self, x):
-        return x
-
-
-class ClassEmbedder(nn.Module):
-    def __init__(self, embed_dim, n_classes=1000, key='class', ucg_rate=0.1):
-        super().__init__()
-        self.key = key
-        self.embedding = nn.Embedding(n_classes, embed_dim)
-        self.n_classes = n_classes
-        self.ucg_rate = ucg_rate
-
-    def forward(self, batch, key=None, disable_dropout=False):
-        if key is None:
-            key = self.key
-        # this is for use in crossattn
-        c = batch[key][:, None]
-        if self.ucg_rate > 0. and not disable_dropout:
-            mask = 1. - torch.bernoulli(torch.ones_like(c) * self.ucg_rate)
-            c = mask * c + (1-mask) * torch.ones_like(c)*(self.n_classes-1)
-            c = c.long()
-        c = self.embedding(c)
-        return c
-
-    def get_unconditional_conditioning(self, bs, device="cuda"):
-        uc_class = self.n_classes - 1  # 1000 classes --> 0 ... 999, one extra class for ucg (class 1000)
-        uc = torch.ones((bs,), device=device) * uc_class
-        uc = {self.key: uc}
-        return uc
-
-
-def disabled_train(self, mode=True):
-    """Overwrite model.train with this function to make sure train/eval mode
-    does not change anymore."""
-    return self
-
-
-class FrozenT5Embedder(AbstractEncoder):
-    """Uses the T5 transformer encoder for text"""
-    def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77, freeze=True):  # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
-        super().__init__()
-        self.tokenizer = T5Tokenizer.from_pretrained(version)
-        self.transformer = T5EncoderModel.from_pretrained(version)
-        self.device = device
-        self.max_length = max_length   # TODO: typical value?
-        if freeze:
-            self.freeze()
-
-    def freeze(self):
-        self.transformer = self.transformer.eval()
-        #self.train = disabled_train
-        for param in self.parameters():
-            param.requires_grad = False
-
-    def forward(self, text):
-        batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
-                                        return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
-        tokens = batch_encoding["input_ids"].to(self.device)
-        outputs = self.transformer(input_ids=tokens)
-
-        z = outputs.last_hidden_state
-        return z
-
-    def encode(self, text):
-        return self(text)
-
-
-class FrozenCLIPEmbedder(AbstractEncoder):
-    """Uses the CLIP transformer encoder for text (from huggingface)"""
-    LAYERS = [
-        "last",
-        "pooled",
-        "hidden"
-    ]
-    def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77,
-                 freeze=True, layer="last", layer_idx=None):  # clip-vit-base-patch32
-        super().__init__()
-        assert layer in self.LAYERS
-        self.tokenizer = CLIPTokenizer.from_pretrained(version)
-        self.transformer = CLIPTextModel.from_pretrained(version)
-        self.device = device
-        self.max_length = max_length
-        if freeze:
-            self.freeze()
-        self.layer = layer
-        self.layer_idx = layer_idx
-        if layer == "hidden":
-            assert layer_idx is not None
-            assert 0 <= abs(layer_idx) <= 12
-
-    def freeze(self):
-        self.transformer = self.transformer.eval()
-        #self.train = disabled_train
-        for param in self.parameters():
-            param.requires_grad = False
-
-    def forward(self, text):
-        batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
-                                        return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
-        tokens = batch_encoding["input_ids"].to(self.device)
-        outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer=="hidden")
-        if self.layer == "last":
-            z = outputs.last_hidden_state
-        elif self.layer == "pooled":
-            z = outputs.pooler_output[:, None, :]
-        else:
-            z = outputs.hidden_states[self.layer_idx]
-        return z
-
-    def encode(self, text):
-        return self(text)
-
-
-class FrozenOpenCLIPEmbedder(AbstractEncoder):
-    """
-    Uses the OpenCLIP transformer encoder for text
-    """
-    LAYERS = [
-        #"pooled",
-        "last",
-        "penultimate"
-    ]
-    def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", max_length=77,
-                 freeze=True, layer="last"):
-        super().__init__()
-        assert layer in self.LAYERS
-        model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'), pretrained=version)
-        del model.visual
-        self.model = model
-
-        self.device = device
-        self.max_length = max_length
-        if freeze:
-            self.freeze()
-        self.layer = layer
-        if self.layer == "last":
-            self.layer_idx = 0
-        elif self.layer == "penultimate":
-            self.layer_idx = 1
-        else:
-            raise NotImplementedError()
-
-    def freeze(self):
-        self.model = self.model.eval()
-        for param in self.parameters():
-            param.requires_grad = False
-
-    def forward(self, text):
-        tokens = open_clip.tokenize(text)
-        z = self.encode_with_transformer(tokens.to(self.device))
-        return z
-
-    def encode_with_transformer(self, text):
-        x = self.model.token_embedding(text)  # [batch_size, n_ctx, d_model]
-        x = x + self.model.positional_embedding
-        x = x.permute(1, 0, 2)  # NLD -> LND
-        x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask)
-        x = x.permute(1, 0, 2)  # LND -> NLD
-        x = self.model.ln_final(x)
-        return x
-
-    def text_transformer_forward(self, x: torch.Tensor, attn_mask = None):
-        for i, r in enumerate(self.model.transformer.resblocks):
-            if i == len(self.model.transformer.resblocks) - self.layer_idx:
-                break
-            if self.model.transformer.grad_checkpointing and not torch.jit.is_scripting():
-                x = checkpoint(r, x, attn_mask)
-            else:
-                x = r(x, attn_mask=attn_mask)
-        return x
-
-    def encode(self, text):
-        return self(text)
-
-
-class FrozenCLIPT5Encoder(AbstractEncoder):
-    def __init__(self, clip_version="openai/clip-vit-large-patch14", t5_version="google/t5-v1_1-xl", device="cuda",
-                 clip_max_length=77, t5_max_length=77):
-        super().__init__()
-        self.clip_encoder = FrozenCLIPEmbedder(clip_version, device, max_length=clip_max_length)
-        self.t5_encoder = FrozenT5Embedder(t5_version, device, max_length=t5_max_length)
-        print(f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder)*1.e-6:.2f} M parameters, "
-              f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder)*1.e-6:.2f} M params.")
-
-    def encode(self, text):
-        return self(text)
-
-    def forward(self, text):
-        clip_z = self.clip_encoder.encode(text)
-        t5_z = self.t5_encoder.encode(text)
-        return [clip_z, t5_z]
-
-
diff --git a/ldm/modules/image_degradation/__init__.py b/ldm/modules/image_degradation/__init__.py
deleted file mode 100644
index 7836cada81f90ded99c58d5942eea4c3477f58fc..0000000000000000000000000000000000000000
--- a/ldm/modules/image_degradation/__init__.py
+++ /dev/null
@@ -1,2 +0,0 @@
-from ldm.modules.image_degradation.bsrgan import degradation_bsrgan_variant as degradation_fn_bsr
-from ldm.modules.image_degradation.bsrgan_light import degradation_bsrgan_variant as degradation_fn_bsr_light
diff --git a/ldm/modules/image_degradation/bsrgan.py b/ldm/modules/image_degradation/bsrgan.py
deleted file mode 100644
index 32ef56169978e550090261cddbcf5eb611a6173b..0000000000000000000000000000000000000000
--- a/ldm/modules/image_degradation/bsrgan.py
+++ /dev/null
@@ -1,730 +0,0 @@
-# -*- coding: utf-8 -*-
-"""
-# --------------------------------------------
-# Super-Resolution
-# --------------------------------------------
-#
-# Kai Zhang (cskaizhang@gmail.com)
-# https://github.com/cszn
-# From 2019/03--2021/08
-# --------------------------------------------
-"""
-
-import numpy as np
-import cv2
-import torch
-
-from functools import partial
-import random
-from scipy import ndimage
-import scipy
-import scipy.stats as ss
-from scipy.interpolate import interp2d
-from scipy.linalg import orth
-import albumentations
-
-import ldm.modules.image_degradation.utils_image as util
-
-
-def modcrop_np(img, sf):
-    '''
-    Args:
-        img: numpy image, WxH or WxHxC
-        sf: scale factor
-    Return:
-        cropped image
-    '''
-    w, h = img.shape[:2]
-    im = np.copy(img)
-    return im[:w - w % sf, :h - h % sf, ...]
-
-
-"""
-# --------------------------------------------
-# anisotropic Gaussian kernels
-# --------------------------------------------
-"""
-
-
-def analytic_kernel(k):
-    """Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
-    k_size = k.shape[0]
-    # Calculate the big kernels size
-    big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
-    # Loop over the small kernel to fill the big one
-    for r in range(k_size):
-        for c in range(k_size):
-            big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
-    # Crop the edges of the big kernel to ignore very small values and increase run time of SR
-    crop = k_size // 2
-    cropped_big_k = big_k[crop:-crop, crop:-crop]
-    # Normalize to 1
-    return cropped_big_k / cropped_big_k.sum()
-
-
-def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
-    """ generate an anisotropic Gaussian kernel
-    Args:
-        ksize : e.g., 15, kernel size
-        theta : [0,  pi], rotation angle range
-        l1    : [0.1,50], scaling of eigenvalues
-        l2    : [0.1,l1], scaling of eigenvalues
-        If l1 = l2, will get an isotropic Gaussian kernel.
-    Returns:
-        k     : kernel
-    """
-
-    v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
-    V = np.array([[v[0], v[1]], [v[1], -v[0]]])
-    D = np.array([[l1, 0], [0, l2]])
-    Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
-    k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
-
-    return k
-
-
-def gm_blur_kernel(mean, cov, size=15):
-    center = size / 2.0 + 0.5
-    k = np.zeros([size, size])
-    for y in range(size):
-        for x in range(size):
-            cy = y - center + 1
-            cx = x - center + 1
-            k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)
-
-    k = k / np.sum(k)
-    return k
-
-
-def shift_pixel(x, sf, upper_left=True):
-    """shift pixel for super-resolution with different scale factors
-    Args:
-        x: WxHxC or WxH
-        sf: scale factor
-        upper_left: shift direction
-    """
-    h, w = x.shape[:2]
-    shift = (sf - 1) * 0.5
-    xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
-    if upper_left:
-        x1 = xv + shift
-        y1 = yv + shift
-    else:
-        x1 = xv - shift
-        y1 = yv - shift
-
-    x1 = np.clip(x1, 0, w - 1)
-    y1 = np.clip(y1, 0, h - 1)
-
-    if x.ndim == 2:
-        x = interp2d(xv, yv, x)(x1, y1)
-    if x.ndim == 3:
-        for i in range(x.shape[-1]):
-            x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
-
-    return x
-
-
-def blur(x, k):
-    '''
-    x: image, NxcxHxW
-    k: kernel, Nx1xhxw
-    '''
-    n, c = x.shape[:2]
-    p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
-    x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
-    k = k.repeat(1, c, 1, 1)
-    k = k.view(-1, 1, k.shape[2], k.shape[3])
-    x = x.view(1, -1, x.shape[2], x.shape[3])
-    x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
-    x = x.view(n, c, x.shape[2], x.shape[3])
-
-    return x
-
-
-def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
-    """"
-    # modified version of https://github.com/assafshocher/BlindSR_dataset_generator
-    # Kai Zhang
-    # min_var = 0.175 * sf  # variance of the gaussian kernel will be sampled between min_var and max_var
-    # max_var = 2.5 * sf
-    """
-    # Set random eigen-vals (lambdas) and angle (theta) for COV matrix
-    lambda_1 = min_var + np.random.rand() * (max_var - min_var)
-    lambda_2 = min_var + np.random.rand() * (max_var - min_var)
-    theta = np.random.rand() * np.pi  # random theta
-    noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
-
-    # Set COV matrix using Lambdas and Theta
-    LAMBDA = np.diag([lambda_1, lambda_2])
-    Q = np.array([[np.cos(theta), -np.sin(theta)],
-                  [np.sin(theta), np.cos(theta)]])
-    SIGMA = Q @ LAMBDA @ Q.T
-    INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
-
-    # Set expectation position (shifting kernel for aligned image)
-    MU = k_size // 2 - 0.5 * (scale_factor - 1)  # - 0.5 * (scale_factor - k_size % 2)
-    MU = MU[None, None, :, None]
-
-    # Create meshgrid for Gaussian
-    [X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
-    Z = np.stack([X, Y], 2)[:, :, :, None]
-
-    # Calcualte Gaussian for every pixel of the kernel
-    ZZ = Z - MU
-    ZZ_t = ZZ.transpose(0, 1, 3, 2)
-    raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
-
-    # shift the kernel so it will be centered
-    # raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
-
-    # Normalize the kernel and return
-    # kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
-    kernel = raw_kernel / np.sum(raw_kernel)
-    return kernel
-
-
-def fspecial_gaussian(hsize, sigma):
-    hsize = [hsize, hsize]
-    siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0]
-    std = sigma
-    [x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1))
-    arg = -(x * x + y * y) / (2 * std * std)
-    h = np.exp(arg)
-    h[h < scipy.finfo(float).eps * h.max()] = 0
-    sumh = h.sum()
-    if sumh != 0:
-        h = h / sumh
-    return h
-
-
-def fspecial_laplacian(alpha):
-    alpha = max([0, min([alpha, 1])])
-    h1 = alpha / (alpha + 1)
-    h2 = (1 - alpha) / (alpha + 1)
-    h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]]
-    h = np.array(h)
-    return h
-
-
-def fspecial(filter_type, *args, **kwargs):
-    '''
-    python code from:
-    https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
-    '''
-    if filter_type == 'gaussian':
-        return fspecial_gaussian(*args, **kwargs)
-    if filter_type == 'laplacian':
-        return fspecial_laplacian(*args, **kwargs)
-
-
-"""
-# --------------------------------------------
-# degradation models
-# --------------------------------------------
-"""
-
-
-def bicubic_degradation(x, sf=3):
-    '''
-    Args:
-        x: HxWxC image, [0, 1]
-        sf: down-scale factor
-    Return:
-        bicubicly downsampled LR image
-    '''
-    x = util.imresize_np(x, scale=1 / sf)
-    return x
-
-
-def srmd_degradation(x, k, sf=3):
-    ''' blur + bicubic downsampling
-    Args:
-        x: HxWxC image, [0, 1]
-        k: hxw, double
-        sf: down-scale factor
-    Return:
-        downsampled LR image
-    Reference:
-        @inproceedings{zhang2018learning,
-          title={Learning a single convolutional super-resolution network for multiple degradations},
-          author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
-          booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
-          pages={3262--3271},
-          year={2018}
-        }
-    '''
-    x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')  # 'nearest' | 'mirror'
-    x = bicubic_degradation(x, sf=sf)
-    return x
-
-
-def dpsr_degradation(x, k, sf=3):
-    ''' bicubic downsampling + blur
-    Args:
-        x: HxWxC image, [0, 1]
-        k: hxw, double
-        sf: down-scale factor
-    Return:
-        downsampled LR image
-    Reference:
-        @inproceedings{zhang2019deep,
-          title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
-          author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
-          booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
-          pages={1671--1681},
-          year={2019}
-        }
-    '''
-    x = bicubic_degradation(x, sf=sf)
-    x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
-    return x
-
-
-def classical_degradation(x, k, sf=3):
-    ''' blur + downsampling
-    Args:
-        x: HxWxC image, [0, 1]/[0, 255]
-        k: hxw, double
-        sf: down-scale factor
-    Return:
-        downsampled LR image
-    '''
-    x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
-    # x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
-    st = 0
-    return x[st::sf, st::sf, ...]
-
-
-def add_sharpening(img, weight=0.5, radius=50, threshold=10):
-    """USM sharpening. borrowed from real-ESRGAN
-    Input image: I; Blurry image: B.
-    1. K = I + weight * (I - B)
-    2. Mask = 1 if abs(I - B) > threshold, else: 0
-    3. Blur mask:
-    4. Out = Mask * K + (1 - Mask) * I
-    Args:
-        img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
-        weight (float): Sharp weight. Default: 1.
-        radius (float): Kernel size of Gaussian blur. Default: 50.
-        threshold (int):
-    """
-    if radius % 2 == 0:
-        radius += 1
-    blur = cv2.GaussianBlur(img, (radius, radius), 0)
-    residual = img - blur
-    mask = np.abs(residual) * 255 > threshold
-    mask = mask.astype('float32')
-    soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
-
-    K = img + weight * residual
-    K = np.clip(K, 0, 1)
-    return soft_mask * K + (1 - soft_mask) * img
-
-
-def add_blur(img, sf=4):
-    wd2 = 4.0 + sf
-    wd = 2.0 + 0.2 * sf
-    if random.random() < 0.5:
-        l1 = wd2 * random.random()
-        l2 = wd2 * random.random()
-        k = anisotropic_Gaussian(ksize=2 * random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2)
-    else:
-        k = fspecial('gaussian', 2 * random.randint(2, 11) + 3, wd * random.random())
-    img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode='mirror')
-
-    return img
-
-
-def add_resize(img, sf=4):
-    rnum = np.random.rand()
-    if rnum > 0.8:  # up
-        sf1 = random.uniform(1, 2)
-    elif rnum < 0.7:  # down
-        sf1 = random.uniform(0.5 / sf, 1)
-    else:
-        sf1 = 1.0
-    img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]))
-    img = np.clip(img, 0.0, 1.0)
-
-    return img
-
-
-# def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
-#     noise_level = random.randint(noise_level1, noise_level2)
-#     rnum = np.random.rand()
-#     if rnum > 0.6:  # add color Gaussian noise
-#         img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
-#     elif rnum < 0.4:  # add grayscale Gaussian noise
-#         img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
-#     else:  # add  noise
-#         L = noise_level2 / 255.
-#         D = np.diag(np.random.rand(3))
-#         U = orth(np.random.rand(3, 3))
-#         conv = np.dot(np.dot(np.transpose(U), D), U)
-#         img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
-#     img = np.clip(img, 0.0, 1.0)
-#     return img
-
-def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
-    noise_level = random.randint(noise_level1, noise_level2)
-    rnum = np.random.rand()
-    if rnum > 0.6:  # add color Gaussian noise
-        img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
-    elif rnum < 0.4:  # add grayscale Gaussian noise
-        img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
-    else:  # add  noise
-        L = noise_level2 / 255.
-        D = np.diag(np.random.rand(3))
-        U = orth(np.random.rand(3, 3))
-        conv = np.dot(np.dot(np.transpose(U), D), U)
-        img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
-    img = np.clip(img, 0.0, 1.0)
-    return img
-
-
-def add_speckle_noise(img, noise_level1=2, noise_level2=25):
-    noise_level = random.randint(noise_level1, noise_level2)
-    img = np.clip(img, 0.0, 1.0)
-    rnum = random.random()
-    if rnum > 0.6:
-        img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
-    elif rnum < 0.4:
-        img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
-    else:
-        L = noise_level2 / 255.
-        D = np.diag(np.random.rand(3))
-        U = orth(np.random.rand(3, 3))
-        conv = np.dot(np.dot(np.transpose(U), D), U)
-        img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
-    img = np.clip(img, 0.0, 1.0)
-    return img
-
-
-def add_Poisson_noise(img):
-    img = np.clip((img * 255.0).round(), 0, 255) / 255.
-    vals = 10 ** (2 * random.random() + 2.0)  # [2, 4]
-    if random.random() < 0.5:
-        img = np.random.poisson(img * vals).astype(np.float32) / vals
-    else:
-        img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
-        img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
-        noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
-        img += noise_gray[:, :, np.newaxis]
-    img = np.clip(img, 0.0, 1.0)
-    return img
-
-
-def add_JPEG_noise(img):
-    quality_factor = random.randint(30, 95)
-    img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
-    result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
-    img = cv2.imdecode(encimg, 1)
-    img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
-    return img
-
-
-def random_crop(lq, hq, sf=4, lq_patchsize=64):
-    h, w = lq.shape[:2]
-    rnd_h = random.randint(0, h - lq_patchsize)
-    rnd_w = random.randint(0, w - lq_patchsize)
-    lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :]
-
-    rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
-    hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :]
-    return lq, hq
-
-
-def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
-    """
-    This is the degradation model of BSRGAN from the paper
-    "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
-    ----------
-    img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
-    sf: scale factor
-    isp_model: camera ISP model
-    Returns
-    -------
-    img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
-    hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
-    """
-    isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
-    sf_ori = sf
-
-    h1, w1 = img.shape[:2]
-    img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...]  # mod crop
-    h, w = img.shape[:2]
-
-    if h < lq_patchsize * sf or w < lq_patchsize * sf:
-        raise ValueError(f'img size ({h1}X{w1}) is too small!')
-
-    hq = img.copy()
-
-    if sf == 4 and random.random() < scale2_prob:  # downsample1
-        if np.random.rand() < 0.5:
-            img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
-                             interpolation=random.choice([1, 2, 3]))
-        else:
-            img = util.imresize_np(img, 1 / 2, True)
-        img = np.clip(img, 0.0, 1.0)
-        sf = 2
-
-    shuffle_order = random.sample(range(7), 7)
-    idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
-    if idx1 > idx2:  # keep downsample3 last
-        shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
-
-    for i in shuffle_order:
-
-        if i == 0:
-            img = add_blur(img, sf=sf)
-
-        elif i == 1:
-            img = add_blur(img, sf=sf)
-
-        elif i == 2:
-            a, b = img.shape[1], img.shape[0]
-            # downsample2
-            if random.random() < 0.75:
-                sf1 = random.uniform(1, 2 * sf)
-                img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
-                                 interpolation=random.choice([1, 2, 3]))
-            else:
-                k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
-                k_shifted = shift_pixel(k, sf)
-                k_shifted = k_shifted / k_shifted.sum()  # blur with shifted kernel
-                img = ndimage.filters.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
-                img = img[0::sf, 0::sf, ...]  # nearest downsampling
-            img = np.clip(img, 0.0, 1.0)
-
-        elif i == 3:
-            # downsample3
-            img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
-            img = np.clip(img, 0.0, 1.0)
-
-        elif i == 4:
-            # add Gaussian noise
-            img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
-
-        elif i == 5:
-            # add JPEG noise
-            if random.random() < jpeg_prob:
-                img = add_JPEG_noise(img)
-
-        elif i == 6:
-            # add processed camera sensor noise
-            if random.random() < isp_prob and isp_model is not None:
-                with torch.no_grad():
-                    img, hq = isp_model.forward(img.copy(), hq)
-
-    # add final JPEG compression noise
-    img = add_JPEG_noise(img)
-
-    # random crop
-    img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
-
-    return img, hq
-
-
-# todo no isp_model?
-def degradation_bsrgan_variant(image, sf=4, isp_model=None):
-    """
-    This is the degradation model of BSRGAN from the paper
-    "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
-    ----------
-    sf: scale factor
-    isp_model: camera ISP model
-    Returns
-    -------
-    img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
-    hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
-    """
-    image = util.uint2single(image)
-    isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
-    sf_ori = sf
-
-    h1, w1 = image.shape[:2]
-    image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...]  # mod crop
-    h, w = image.shape[:2]
-
-    hq = image.copy()
-
-    if sf == 4 and random.random() < scale2_prob:  # downsample1
-        if np.random.rand() < 0.5:
-            image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
-                               interpolation=random.choice([1, 2, 3]))
-        else:
-            image = util.imresize_np(image, 1 / 2, True)
-        image = np.clip(image, 0.0, 1.0)
-        sf = 2
-
-    shuffle_order = random.sample(range(7), 7)
-    idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
-    if idx1 > idx2:  # keep downsample3 last
-        shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
-
-    for i in shuffle_order:
-
-        if i == 0:
-            image = add_blur(image, sf=sf)
-
-        elif i == 1:
-            image = add_blur(image, sf=sf)
-
-        elif i == 2:
-            a, b = image.shape[1], image.shape[0]
-            # downsample2
-            if random.random() < 0.75:
-                sf1 = random.uniform(1, 2 * sf)
-                image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
-                                   interpolation=random.choice([1, 2, 3]))
-            else:
-                k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
-                k_shifted = shift_pixel(k, sf)
-                k_shifted = k_shifted / k_shifted.sum()  # blur with shifted kernel
-                image = ndimage.filters.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
-                image = image[0::sf, 0::sf, ...]  # nearest downsampling
-            image = np.clip(image, 0.0, 1.0)
-
-        elif i == 3:
-            # downsample3
-            image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
-            image = np.clip(image, 0.0, 1.0)
-
-        elif i == 4:
-            # add Gaussian noise
-            image = add_Gaussian_noise(image, noise_level1=2, noise_level2=25)
-
-        elif i == 5:
-            # add JPEG noise
-            if random.random() < jpeg_prob:
-                image = add_JPEG_noise(image)
-
-        # elif i == 6:
-        #     # add processed camera sensor noise
-        #     if random.random() < isp_prob and isp_model is not None:
-        #         with torch.no_grad():
-        #             img, hq = isp_model.forward(img.copy(), hq)
-
-    # add final JPEG compression noise
-    image = add_JPEG_noise(image)
-    image = util.single2uint(image)
-    example = {"image":image}
-    return example
-
-
-# TODO incase there is a pickle error one needs to replace a += x with a = a + x in add_speckle_noise etc...
-def degradation_bsrgan_plus(img, sf=4, shuffle_prob=0.5, use_sharp=True, lq_patchsize=64, isp_model=None):
-    """
-    This is an extended degradation model by combining
-    the degradation models of BSRGAN and Real-ESRGAN
-    ----------
-    img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
-    sf: scale factor
-    use_shuffle: the degradation shuffle
-    use_sharp: sharpening the img
-    Returns
-    -------
-    img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
-    hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
-    """
-
-    h1, w1 = img.shape[:2]
-    img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...]  # mod crop
-    h, w = img.shape[:2]
-
-    if h < lq_patchsize * sf or w < lq_patchsize * sf:
-        raise ValueError(f'img size ({h1}X{w1}) is too small!')
-
-    if use_sharp:
-        img = add_sharpening(img)
-    hq = img.copy()
-
-    if random.random() < shuffle_prob:
-        shuffle_order = random.sample(range(13), 13)
-    else:
-        shuffle_order = list(range(13))
-        # local shuffle for noise, JPEG is always the last one
-        shuffle_order[2:6] = random.sample(shuffle_order[2:6], len(range(2, 6)))
-        shuffle_order[9:13] = random.sample(shuffle_order[9:13], len(range(9, 13)))
-
-    poisson_prob, speckle_prob, isp_prob = 0.1, 0.1, 0.1
-
-    for i in shuffle_order:
-        if i == 0:
-            img = add_blur(img, sf=sf)
-        elif i == 1:
-            img = add_resize(img, sf=sf)
-        elif i == 2:
-            img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
-        elif i == 3:
-            if random.random() < poisson_prob:
-                img = add_Poisson_noise(img)
-        elif i == 4:
-            if random.random() < speckle_prob:
-                img = add_speckle_noise(img)
-        elif i == 5:
-            if random.random() < isp_prob and isp_model is not None:
-                with torch.no_grad():
-                    img, hq = isp_model.forward(img.copy(), hq)
-        elif i == 6:
-            img = add_JPEG_noise(img)
-        elif i == 7:
-            img = add_blur(img, sf=sf)
-        elif i == 8:
-            img = add_resize(img, sf=sf)
-        elif i == 9:
-            img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25)
-        elif i == 10:
-            if random.random() < poisson_prob:
-                img = add_Poisson_noise(img)
-        elif i == 11:
-            if random.random() < speckle_prob:
-                img = add_speckle_noise(img)
-        elif i == 12:
-            if random.random() < isp_prob and isp_model is not None:
-                with torch.no_grad():
-                    img, hq = isp_model.forward(img.copy(), hq)
-        else:
-            print('check the shuffle!')
-
-    # resize to desired size
-    img = cv2.resize(img, (int(1 / sf * hq.shape[1]), int(1 / sf * hq.shape[0])),
-                     interpolation=random.choice([1, 2, 3]))
-
-    # add final JPEG compression noise
-    img = add_JPEG_noise(img)
-
-    # random crop
-    img, hq = random_crop(img, hq, sf, lq_patchsize)
-
-    return img, hq
-
-
-if __name__ == '__main__':
-	print("hey")
-	img = util.imread_uint('utils/test.png', 3)
-	print(img)
-	img = util.uint2single(img)
-	print(img)
-	img = img[:448, :448]
-	h = img.shape[0] // 4
-	print("resizing to", h)
-	sf = 4
-	deg_fn = partial(degradation_bsrgan_variant, sf=sf)
-	for i in range(20):
-		print(i)
-		img_lq = deg_fn(img)
-		print(img_lq)
-		img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img)["image"]
-		print(img_lq.shape)
-		print("bicubic", img_lq_bicubic.shape)
-		print(img_hq.shape)
-		lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
-		                        interpolation=0)
-		lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
-		                        interpolation=0)
-		img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
-		util.imsave(img_concat, str(i) + '.png')
-
-
diff --git a/ldm/modules/image_degradation/bsrgan_light.py b/ldm/modules/image_degradation/bsrgan_light.py
deleted file mode 100644
index 808c7f882cb75e2ba2340d5b55881d11927351f0..0000000000000000000000000000000000000000
--- a/ldm/modules/image_degradation/bsrgan_light.py
+++ /dev/null
@@ -1,651 +0,0 @@
-# -*- coding: utf-8 -*-
-import numpy as np
-import cv2
-import torch
-
-from functools import partial
-import random
-from scipy import ndimage
-import scipy
-import scipy.stats as ss
-from scipy.interpolate import interp2d
-from scipy.linalg import orth
-import albumentations
-
-import ldm.modules.image_degradation.utils_image as util
-
-"""
-# --------------------------------------------
-# Super-Resolution
-# --------------------------------------------
-#
-# Kai Zhang (cskaizhang@gmail.com)
-# https://github.com/cszn
-# From 2019/03--2021/08
-# --------------------------------------------
-"""
-
-def modcrop_np(img, sf):
-    '''
-    Args:
-        img: numpy image, WxH or WxHxC
-        sf: scale factor
-    Return:
-        cropped image
-    '''
-    w, h = img.shape[:2]
-    im = np.copy(img)
-    return im[:w - w % sf, :h - h % sf, ...]
-
-
-"""
-# --------------------------------------------
-# anisotropic Gaussian kernels
-# --------------------------------------------
-"""
-
-
-def analytic_kernel(k):
-    """Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)"""
-    k_size = k.shape[0]
-    # Calculate the big kernels size
-    big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2))
-    # Loop over the small kernel to fill the big one
-    for r in range(k_size):
-        for c in range(k_size):
-            big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k
-    # Crop the edges of the big kernel to ignore very small values and increase run time of SR
-    crop = k_size // 2
-    cropped_big_k = big_k[crop:-crop, crop:-crop]
-    # Normalize to 1
-    return cropped_big_k / cropped_big_k.sum()
-
-
-def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6):
-    """ generate an anisotropic Gaussian kernel
-    Args:
-        ksize : e.g., 15, kernel size
-        theta : [0,  pi], rotation angle range
-        l1    : [0.1,50], scaling of eigenvalues
-        l2    : [0.1,l1], scaling of eigenvalues
-        If l1 = l2, will get an isotropic Gaussian kernel.
-    Returns:
-        k     : kernel
-    """
-
-    v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.]))
-    V = np.array([[v[0], v[1]], [v[1], -v[0]]])
-    D = np.array([[l1, 0], [0, l2]])
-    Sigma = np.dot(np.dot(V, D), np.linalg.inv(V))
-    k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize)
-
-    return k
-
-
-def gm_blur_kernel(mean, cov, size=15):
-    center = size / 2.0 + 0.5
-    k = np.zeros([size, size])
-    for y in range(size):
-        for x in range(size):
-            cy = y - center + 1
-            cx = x - center + 1
-            k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov)
-
-    k = k / np.sum(k)
-    return k
-
-
-def shift_pixel(x, sf, upper_left=True):
-    """shift pixel for super-resolution with different scale factors
-    Args:
-        x: WxHxC or WxH
-        sf: scale factor
-        upper_left: shift direction
-    """
-    h, w = x.shape[:2]
-    shift = (sf - 1) * 0.5
-    xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0)
-    if upper_left:
-        x1 = xv + shift
-        y1 = yv + shift
-    else:
-        x1 = xv - shift
-        y1 = yv - shift
-
-    x1 = np.clip(x1, 0, w - 1)
-    y1 = np.clip(y1, 0, h - 1)
-
-    if x.ndim == 2:
-        x = interp2d(xv, yv, x)(x1, y1)
-    if x.ndim == 3:
-        for i in range(x.shape[-1]):
-            x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1)
-
-    return x
-
-
-def blur(x, k):
-    '''
-    x: image, NxcxHxW
-    k: kernel, Nx1xhxw
-    '''
-    n, c = x.shape[:2]
-    p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2
-    x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate')
-    k = k.repeat(1, c, 1, 1)
-    k = k.view(-1, 1, k.shape[2], k.shape[3])
-    x = x.view(1, -1, x.shape[2], x.shape[3])
-    x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c)
-    x = x.view(n, c, x.shape[2], x.shape[3])
-
-    return x
-
-
-def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0):
-    """"
-    # modified version of https://github.com/assafshocher/BlindSR_dataset_generator
-    # Kai Zhang
-    # min_var = 0.175 * sf  # variance of the gaussian kernel will be sampled between min_var and max_var
-    # max_var = 2.5 * sf
-    """
-    # Set random eigen-vals (lambdas) and angle (theta) for COV matrix
-    lambda_1 = min_var + np.random.rand() * (max_var - min_var)
-    lambda_2 = min_var + np.random.rand() * (max_var - min_var)
-    theta = np.random.rand() * np.pi  # random theta
-    noise = -noise_level + np.random.rand(*k_size) * noise_level * 2
-
-    # Set COV matrix using Lambdas and Theta
-    LAMBDA = np.diag([lambda_1, lambda_2])
-    Q = np.array([[np.cos(theta), -np.sin(theta)],
-                  [np.sin(theta), np.cos(theta)]])
-    SIGMA = Q @ LAMBDA @ Q.T
-    INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :]
-
-    # Set expectation position (shifting kernel for aligned image)
-    MU = k_size // 2 - 0.5 * (scale_factor - 1)  # - 0.5 * (scale_factor - k_size % 2)
-    MU = MU[None, None, :, None]
-
-    # Create meshgrid for Gaussian
-    [X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1]))
-    Z = np.stack([X, Y], 2)[:, :, :, None]
-
-    # Calcualte Gaussian for every pixel of the kernel
-    ZZ = Z - MU
-    ZZ_t = ZZ.transpose(0, 1, 3, 2)
-    raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise)
-
-    # shift the kernel so it will be centered
-    # raw_kernel_centered = kernel_shift(raw_kernel, scale_factor)
-
-    # Normalize the kernel and return
-    # kernel = raw_kernel_centered / np.sum(raw_kernel_centered)
-    kernel = raw_kernel / np.sum(raw_kernel)
-    return kernel
-
-
-def fspecial_gaussian(hsize, sigma):
-    hsize = [hsize, hsize]
-    siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0]
-    std = sigma
-    [x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1))
-    arg = -(x * x + y * y) / (2 * std * std)
-    h = np.exp(arg)
-    h[h < scipy.finfo(float).eps * h.max()] = 0
-    sumh = h.sum()
-    if sumh != 0:
-        h = h / sumh
-    return h
-
-
-def fspecial_laplacian(alpha):
-    alpha = max([0, min([alpha, 1])])
-    h1 = alpha / (alpha + 1)
-    h2 = (1 - alpha) / (alpha + 1)
-    h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]]
-    h = np.array(h)
-    return h
-
-
-def fspecial(filter_type, *args, **kwargs):
-    '''
-    python code from:
-    https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py
-    '''
-    if filter_type == 'gaussian':
-        return fspecial_gaussian(*args, **kwargs)
-    if filter_type == 'laplacian':
-        return fspecial_laplacian(*args, **kwargs)
-
-
-"""
-# --------------------------------------------
-# degradation models
-# --------------------------------------------
-"""
-
-
-def bicubic_degradation(x, sf=3):
-    '''
-    Args:
-        x: HxWxC image, [0, 1]
-        sf: down-scale factor
-    Return:
-        bicubicly downsampled LR image
-    '''
-    x = util.imresize_np(x, scale=1 / sf)
-    return x
-
-
-def srmd_degradation(x, k, sf=3):
-    ''' blur + bicubic downsampling
-    Args:
-        x: HxWxC image, [0, 1]
-        k: hxw, double
-        sf: down-scale factor
-    Return:
-        downsampled LR image
-    Reference:
-        @inproceedings{zhang2018learning,
-          title={Learning a single convolutional super-resolution network for multiple degradations},
-          author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
-          booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
-          pages={3262--3271},
-          year={2018}
-        }
-    '''
-    x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap')  # 'nearest' | 'mirror'
-    x = bicubic_degradation(x, sf=sf)
-    return x
-
-
-def dpsr_degradation(x, k, sf=3):
-    ''' bicubic downsampling + blur
-    Args:
-        x: HxWxC image, [0, 1]
-        k: hxw, double
-        sf: down-scale factor
-    Return:
-        downsampled LR image
-    Reference:
-        @inproceedings{zhang2019deep,
-          title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels},
-          author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei},
-          booktitle={IEEE Conference on Computer Vision and Pattern Recognition},
-          pages={1671--1681},
-          year={2019}
-        }
-    '''
-    x = bicubic_degradation(x, sf=sf)
-    x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
-    return x
-
-
-def classical_degradation(x, k, sf=3):
-    ''' blur + downsampling
-    Args:
-        x: HxWxC image, [0, 1]/[0, 255]
-        k: hxw, double
-        sf: down-scale factor
-    Return:
-        downsampled LR image
-    '''
-    x = ndimage.convolve(x, np.expand_dims(k, axis=2), mode='wrap')
-    # x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2))
-    st = 0
-    return x[st::sf, st::sf, ...]
-
-
-def add_sharpening(img, weight=0.5, radius=50, threshold=10):
-    """USM sharpening. borrowed from real-ESRGAN
-    Input image: I; Blurry image: B.
-    1. K = I + weight * (I - B)
-    2. Mask = 1 if abs(I - B) > threshold, else: 0
-    3. Blur mask:
-    4. Out = Mask * K + (1 - Mask) * I
-    Args:
-        img (Numpy array): Input image, HWC, BGR; float32, [0, 1].
-        weight (float): Sharp weight. Default: 1.
-        radius (float): Kernel size of Gaussian blur. Default: 50.
-        threshold (int):
-    """
-    if radius % 2 == 0:
-        radius += 1
-    blur = cv2.GaussianBlur(img, (radius, radius), 0)
-    residual = img - blur
-    mask = np.abs(residual) * 255 > threshold
-    mask = mask.astype('float32')
-    soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0)
-
-    K = img + weight * residual
-    K = np.clip(K, 0, 1)
-    return soft_mask * K + (1 - soft_mask) * img
-
-
-def add_blur(img, sf=4):
-    wd2 = 4.0 + sf
-    wd = 2.0 + 0.2 * sf
-
-    wd2 = wd2/4
-    wd = wd/4
-
-    if random.random() < 0.5:
-        l1 = wd2 * random.random()
-        l2 = wd2 * random.random()
-        k = anisotropic_Gaussian(ksize=random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2)
-    else:
-        k = fspecial('gaussian', random.randint(2, 4) + 3, wd * random.random())
-    img = ndimage.convolve(img, np.expand_dims(k, axis=2), mode='mirror')
-
-    return img
-
-
-def add_resize(img, sf=4):
-    rnum = np.random.rand()
-    if rnum > 0.8:  # up
-        sf1 = random.uniform(1, 2)
-    elif rnum < 0.7:  # down
-        sf1 = random.uniform(0.5 / sf, 1)
-    else:
-        sf1 = 1.0
-    img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3]))
-    img = np.clip(img, 0.0, 1.0)
-
-    return img
-
-
-# def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
-#     noise_level = random.randint(noise_level1, noise_level2)
-#     rnum = np.random.rand()
-#     if rnum > 0.6:  # add color Gaussian noise
-#         img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
-#     elif rnum < 0.4:  # add grayscale Gaussian noise
-#         img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
-#     else:  # add  noise
-#         L = noise_level2 / 255.
-#         D = np.diag(np.random.rand(3))
-#         U = orth(np.random.rand(3, 3))
-#         conv = np.dot(np.dot(np.transpose(U), D), U)
-#         img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
-#     img = np.clip(img, 0.0, 1.0)
-#     return img
-
-def add_Gaussian_noise(img, noise_level1=2, noise_level2=25):
-    noise_level = random.randint(noise_level1, noise_level2)
-    rnum = np.random.rand()
-    if rnum > 0.6:  # add color Gaussian noise
-        img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
-    elif rnum < 0.4:  # add grayscale Gaussian noise
-        img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
-    else:  # add  noise
-        L = noise_level2 / 255.
-        D = np.diag(np.random.rand(3))
-        U = orth(np.random.rand(3, 3))
-        conv = np.dot(np.dot(np.transpose(U), D), U)
-        img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
-    img = np.clip(img, 0.0, 1.0)
-    return img
-
-
-def add_speckle_noise(img, noise_level1=2, noise_level2=25):
-    noise_level = random.randint(noise_level1, noise_level2)
-    img = np.clip(img, 0.0, 1.0)
-    rnum = random.random()
-    if rnum > 0.6:
-        img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32)
-    elif rnum < 0.4:
-        img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32)
-    else:
-        L = noise_level2 / 255.
-        D = np.diag(np.random.rand(3))
-        U = orth(np.random.rand(3, 3))
-        conv = np.dot(np.dot(np.transpose(U), D), U)
-        img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32)
-    img = np.clip(img, 0.0, 1.0)
-    return img
-
-
-def add_Poisson_noise(img):
-    img = np.clip((img * 255.0).round(), 0, 255) / 255.
-    vals = 10 ** (2 * random.random() + 2.0)  # [2, 4]
-    if random.random() < 0.5:
-        img = np.random.poisson(img * vals).astype(np.float32) / vals
-    else:
-        img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114])
-        img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255.
-        noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray
-        img += noise_gray[:, :, np.newaxis]
-    img = np.clip(img, 0.0, 1.0)
-    return img
-
-
-def add_JPEG_noise(img):
-    quality_factor = random.randint(80, 95)
-    img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR)
-    result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
-    img = cv2.imdecode(encimg, 1)
-    img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB)
-    return img
-
-
-def random_crop(lq, hq, sf=4, lq_patchsize=64):
-    h, w = lq.shape[:2]
-    rnd_h = random.randint(0, h - lq_patchsize)
-    rnd_w = random.randint(0, w - lq_patchsize)
-    lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :]
-
-    rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf)
-    hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :]
-    return lq, hq
-
-
-def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None):
-    """
-    This is the degradation model of BSRGAN from the paper
-    "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
-    ----------
-    img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf)
-    sf: scale factor
-    isp_model: camera ISP model
-    Returns
-    -------
-    img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
-    hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
-    """
-    isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
-    sf_ori = sf
-
-    h1, w1 = img.shape[:2]
-    img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...]  # mod crop
-    h, w = img.shape[:2]
-
-    if h < lq_patchsize * sf or w < lq_patchsize * sf:
-        raise ValueError(f'img size ({h1}X{w1}) is too small!')
-
-    hq = img.copy()
-
-    if sf == 4 and random.random() < scale2_prob:  # downsample1
-        if np.random.rand() < 0.5:
-            img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])),
-                             interpolation=random.choice([1, 2, 3]))
-        else:
-            img = util.imresize_np(img, 1 / 2, True)
-        img = np.clip(img, 0.0, 1.0)
-        sf = 2
-
-    shuffle_order = random.sample(range(7), 7)
-    idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
-    if idx1 > idx2:  # keep downsample3 last
-        shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
-
-    for i in shuffle_order:
-
-        if i == 0:
-            img = add_blur(img, sf=sf)
-
-        elif i == 1:
-            img = add_blur(img, sf=sf)
-
-        elif i == 2:
-            a, b = img.shape[1], img.shape[0]
-            # downsample2
-            if random.random() < 0.75:
-                sf1 = random.uniform(1, 2 * sf)
-                img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])),
-                                 interpolation=random.choice([1, 2, 3]))
-            else:
-                k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
-                k_shifted = shift_pixel(k, sf)
-                k_shifted = k_shifted / k_shifted.sum()  # blur with shifted kernel
-                img = ndimage.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror')
-                img = img[0::sf, 0::sf, ...]  # nearest downsampling
-            img = np.clip(img, 0.0, 1.0)
-
-        elif i == 3:
-            # downsample3
-            img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
-            img = np.clip(img, 0.0, 1.0)
-
-        elif i == 4:
-            # add Gaussian noise
-            img = add_Gaussian_noise(img, noise_level1=2, noise_level2=8)
-
-        elif i == 5:
-            # add JPEG noise
-            if random.random() < jpeg_prob:
-                img = add_JPEG_noise(img)
-
-        elif i == 6:
-            # add processed camera sensor noise
-            if random.random() < isp_prob and isp_model is not None:
-                with torch.no_grad():
-                    img, hq = isp_model.forward(img.copy(), hq)
-
-    # add final JPEG compression noise
-    img = add_JPEG_noise(img)
-
-    # random crop
-    img, hq = random_crop(img, hq, sf_ori, lq_patchsize)
-
-    return img, hq
-
-
-# todo no isp_model?
-def degradation_bsrgan_variant(image, sf=4, isp_model=None, up=False):
-    """
-    This is the degradation model of BSRGAN from the paper
-    "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution"
-    ----------
-    sf: scale factor
-    isp_model: camera ISP model
-    Returns
-    -------
-    img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1]
-    hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1]
-    """
-    image = util.uint2single(image)
-    isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25
-    sf_ori = sf
-
-    h1, w1 = image.shape[:2]
-    image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...]  # mod crop
-    h, w = image.shape[:2]
-
-    hq = image.copy()
-
-    if sf == 4 and random.random() < scale2_prob:  # downsample1
-        if np.random.rand() < 0.5:
-            image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])),
-                               interpolation=random.choice([1, 2, 3]))
-        else:
-            image = util.imresize_np(image, 1 / 2, True)
-        image = np.clip(image, 0.0, 1.0)
-        sf = 2
-
-    shuffle_order = random.sample(range(7), 7)
-    idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3)
-    if idx1 > idx2:  # keep downsample3 last
-        shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1]
-
-    for i in shuffle_order:
-
-        if i == 0:
-            image = add_blur(image, sf=sf)
-
-        # elif i == 1:
-        #     image = add_blur(image, sf=sf)
-
-        if i == 0:
-            pass
-
-        elif i == 2:
-            a, b = image.shape[1], image.shape[0]
-            # downsample2
-            if random.random() < 0.8:
-                sf1 = random.uniform(1, 2 * sf)
-                image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])),
-                                   interpolation=random.choice([1, 2, 3]))
-            else:
-                k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf))
-                k_shifted = shift_pixel(k, sf)
-                k_shifted = k_shifted / k_shifted.sum()  # blur with shifted kernel
-                image = ndimage.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror')
-                image = image[0::sf, 0::sf, ...]  # nearest downsampling
-
-            image = np.clip(image, 0.0, 1.0)
-
-        elif i == 3:
-            # downsample3
-            image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3]))
-            image = np.clip(image, 0.0, 1.0)
-
-        elif i == 4:
-            # add Gaussian noise
-            image = add_Gaussian_noise(image, noise_level1=1, noise_level2=2)
-
-        elif i == 5:
-            # add JPEG noise
-            if random.random() < jpeg_prob:
-                image = add_JPEG_noise(image)
-        #
-        # elif i == 6:
-        #     # add processed camera sensor noise
-        #     if random.random() < isp_prob and isp_model is not None:
-        #         with torch.no_grad():
-        #             img, hq = isp_model.forward(img.copy(), hq)
-
-    # add final JPEG compression noise
-    image = add_JPEG_noise(image)
-    image = util.single2uint(image)
-    if up:
-        image = cv2.resize(image, (w1, h1), interpolation=cv2.INTER_CUBIC)  # todo: random, as above? want to condition on it then
-    example = {"image": image}
-    return example
-
-
-
-
-if __name__ == '__main__':
-    print("hey")
-    img = util.imread_uint('utils/test.png', 3)
-    img = img[:448, :448]
-    h = img.shape[0] // 4
-    print("resizing to", h)
-    sf = 4
-    deg_fn = partial(degradation_bsrgan_variant, sf=sf)
-    for i in range(20):
-        print(i)
-        img_hq = img
-        img_lq = deg_fn(img)["image"]
-        img_hq, img_lq = util.uint2single(img_hq), util.uint2single(img_lq)
-        print(img_lq)
-        img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img_hq)["image"]
-        print(img_lq.shape)
-        print("bicubic", img_lq_bicubic.shape)
-        print(img_hq.shape)
-        lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
-                                interpolation=0)
-        lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic),
-                                        (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])),
-                                        interpolation=0)
-        img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1)
-        util.imsave(img_concat, str(i) + '.png')
diff --git a/ldm/modules/image_degradation/utils/test.png b/ldm/modules/image_degradation/utils/test.png
deleted file mode 100644
index 4249b43de0f22707758d13c240268a401642f6e6..0000000000000000000000000000000000000000
Binary files a/ldm/modules/image_degradation/utils/test.png and /dev/null differ
diff --git a/ldm/modules/image_degradation/utils_image.py b/ldm/modules/image_degradation/utils_image.py
deleted file mode 100644
index 0175f155ad900ae33c3c46ed87f49b352e3faf98..0000000000000000000000000000000000000000
--- a/ldm/modules/image_degradation/utils_image.py
+++ /dev/null
@@ -1,916 +0,0 @@
-import os
-import math
-import random
-import numpy as np
-import torch
-import cv2
-from torchvision.utils import make_grid
-from datetime import datetime
-#import matplotlib.pyplot as plt   # TODO: check with Dominik, also bsrgan.py vs bsrgan_light.py
-
-
-os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
-
-
-'''
-# --------------------------------------------
-# Kai Zhang (github: https://github.com/cszn)
-# 03/Mar/2019
-# --------------------------------------------
-# https://github.com/twhui/SRGAN-pyTorch
-# https://github.com/xinntao/BasicSR
-# --------------------------------------------
-'''
-
-
-IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', '.tif']
-
-
-def is_image_file(filename):
-    return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
-
-
-def get_timestamp():
-    return datetime.now().strftime('%y%m%d-%H%M%S')
-
-
-def imshow(x, title=None, cbar=False, figsize=None):
-    plt.figure(figsize=figsize)
-    plt.imshow(np.squeeze(x), interpolation='nearest', cmap='gray')
-    if title:
-        plt.title(title)
-    if cbar:
-        plt.colorbar()
-    plt.show()
-
-
-def surf(Z, cmap='rainbow', figsize=None):
-    plt.figure(figsize=figsize)
-    ax3 = plt.axes(projection='3d')
-
-    w, h = Z.shape[:2]
-    xx = np.arange(0,w,1)
-    yy = np.arange(0,h,1)
-    X, Y = np.meshgrid(xx, yy)
-    ax3.plot_surface(X,Y,Z,cmap=cmap)
-    #ax3.contour(X,Y,Z, zdim='z',offset=-2๏ผcmap=cmap)
-    plt.show()
-
-
-'''
-# --------------------------------------------
-# get image pathes
-# --------------------------------------------
-'''
-
-
-def get_image_paths(dataroot):
-    paths = None  # return None if dataroot is None
-    if dataroot is not None:
-        paths = sorted(_get_paths_from_images(dataroot))
-    return paths
-
-
-def _get_paths_from_images(path):
-    assert os.path.isdir(path), '{:s} is not a valid directory'.format(path)
-    images = []
-    for dirpath, _, fnames in sorted(os.walk(path)):
-        for fname in sorted(fnames):
-            if is_image_file(fname):
-                img_path = os.path.join(dirpath, fname)
-                images.append(img_path)
-    assert images, '{:s} has no valid image file'.format(path)
-    return images
-
-
-'''
-# --------------------------------------------
-# split large images into small images 
-# --------------------------------------------
-'''
-
-
-def patches_from_image(img, p_size=512, p_overlap=64, p_max=800):
-    w, h = img.shape[:2]
-    patches = []
-    if w > p_max and h > p_max:
-        w1 = list(np.arange(0, w-p_size, p_size-p_overlap, dtype=np.int))
-        h1 = list(np.arange(0, h-p_size, p_size-p_overlap, dtype=np.int))
-        w1.append(w-p_size)
-        h1.append(h-p_size)
-#        print(w1)
-#        print(h1)
-        for i in w1:
-            for j in h1:
-                patches.append(img[i:i+p_size, j:j+p_size,:])
-    else:
-        patches.append(img)
-
-    return patches
-
-
-def imssave(imgs, img_path):
-    """
-    imgs: list, N images of size WxHxC
-    """
-    img_name, ext = os.path.splitext(os.path.basename(img_path))
-
-    for i, img in enumerate(imgs):
-        if img.ndim == 3:
-            img = img[:, :, [2, 1, 0]]
-        new_path = os.path.join(os.path.dirname(img_path), img_name+str('_s{:04d}'.format(i))+'.png')
-        cv2.imwrite(new_path, img)
-
-
-def split_imageset(original_dataroot, taget_dataroot, n_channels=3, p_size=800, p_overlap=96, p_max=1000):
-    """
-    split the large images from original_dataroot into small overlapped images with size (p_size)x(p_size),
-    and save them into taget_dataroot; only the images with larger size than (p_max)x(p_max)
-    will be splitted.
-    Args:
-        original_dataroot:
-        taget_dataroot:
-        p_size: size of small images
-        p_overlap: patch size in training is a good choice
-        p_max: images with smaller size than (p_max)x(p_max) keep unchanged.
-    """
-    paths = get_image_paths(original_dataroot)
-    for img_path in paths:
-        # img_name, ext = os.path.splitext(os.path.basename(img_path))
-        img = imread_uint(img_path, n_channels=n_channels)
-        patches = patches_from_image(img, p_size, p_overlap, p_max)
-        imssave(patches, os.path.join(taget_dataroot,os.path.basename(img_path)))
-        #if original_dataroot == taget_dataroot:
-        #del img_path
-
-'''
-# --------------------------------------------
-# makedir
-# --------------------------------------------
-'''
-
-
-def mkdir(path):
-    if not os.path.exists(path):
-        os.makedirs(path)
-
-
-def mkdirs(paths):
-    if isinstance(paths, str):
-        mkdir(paths)
-    else:
-        for path in paths:
-            mkdir(path)
-
-
-def mkdir_and_rename(path):
-    if os.path.exists(path):
-        new_name = path + '_archived_' + get_timestamp()
-        print('Path already exists. Rename it to [{:s}]'.format(new_name))
-        os.rename(path, new_name)
-    os.makedirs(path)
-
-
-'''
-# --------------------------------------------
-# read image from path
-# opencv is fast, but read BGR numpy image
-# --------------------------------------------
-'''
-
-
-# --------------------------------------------
-# get uint8 image of size HxWxn_channles (RGB)
-# --------------------------------------------
-def imread_uint(path, n_channels=3):
-    #  input: path
-    # output: HxWx3(RGB or GGG), or HxWx1 (G)
-    if n_channels == 1:
-        img = cv2.imread(path, 0)  # cv2.IMREAD_GRAYSCALE
-        img = np.expand_dims(img, axis=2)  # HxWx1
-    elif n_channels == 3:
-        img = cv2.imread(path, cv2.IMREAD_UNCHANGED)  # BGR or G
-        if img.ndim == 2:
-            img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)  # GGG
-        else:
-            img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)  # RGB
-    return img
-
-
-# --------------------------------------------
-# matlab's imwrite
-# --------------------------------------------
-def imsave(img, img_path):
-    img = np.squeeze(img)
-    if img.ndim == 3:
-        img = img[:, :, [2, 1, 0]]
-    cv2.imwrite(img_path, img)
-
-def imwrite(img, img_path):
-    img = np.squeeze(img)
-    if img.ndim == 3:
-        img = img[:, :, [2, 1, 0]]
-    cv2.imwrite(img_path, img)
-
-
-
-# --------------------------------------------
-# get single image of size HxWxn_channles (BGR)
-# --------------------------------------------
-def read_img(path):
-    # read image by cv2
-    # return: Numpy float32, HWC, BGR, [0,1]
-    img = cv2.imread(path, cv2.IMREAD_UNCHANGED)  # cv2.IMREAD_GRAYSCALE
-    img = img.astype(np.float32) / 255.
-    if img.ndim == 2:
-        img = np.expand_dims(img, axis=2)
-    # some images have 4 channels
-    if img.shape[2] > 3:
-        img = img[:, :, :3]
-    return img
-
-
-'''
-# --------------------------------------------
-# image format conversion
-# --------------------------------------------
-# numpy(single) <--->  numpy(unit)
-# numpy(single) <--->  tensor
-# numpy(unit)   <--->  tensor
-# --------------------------------------------
-'''
-
-
-# --------------------------------------------
-# numpy(single) [0, 1] <--->  numpy(unit)
-# --------------------------------------------
-
-
-def uint2single(img):
-
-    return np.float32(img/255.)
-
-
-def single2uint(img):
-
-    return np.uint8((img.clip(0, 1)*255.).round())
-
-
-def uint162single(img):
-
-    return np.float32(img/65535.)
-
-
-def single2uint16(img):
-
-    return np.uint16((img.clip(0, 1)*65535.).round())
-
-
-# --------------------------------------------
-# numpy(unit) (HxWxC or HxW) <--->  tensor
-# --------------------------------------------
-
-
-# convert uint to 4-dimensional torch tensor
-def uint2tensor4(img):
-    if img.ndim == 2:
-        img = np.expand_dims(img, axis=2)
-    return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.).unsqueeze(0)
-
-
-# convert uint to 3-dimensional torch tensor
-def uint2tensor3(img):
-    if img.ndim == 2:
-        img = np.expand_dims(img, axis=2)
-    return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.)
-
-
-# convert 2/3/4-dimensional torch tensor to uint
-def tensor2uint(img):
-    img = img.data.squeeze().float().clamp_(0, 1).cpu().numpy()
-    if img.ndim == 3:
-        img = np.transpose(img, (1, 2, 0))
-    return np.uint8((img*255.0).round())
-
-
-# --------------------------------------------
-# numpy(single) (HxWxC) <--->  tensor
-# --------------------------------------------
-
-
-# convert single (HxWxC) to 3-dimensional torch tensor
-def single2tensor3(img):
-    return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float()
-
-
-# convert single (HxWxC) to 4-dimensional torch tensor
-def single2tensor4(img):
-    return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().unsqueeze(0)
-
-
-# convert torch tensor to single
-def tensor2single(img):
-    img = img.data.squeeze().float().cpu().numpy()
-    if img.ndim == 3:
-        img = np.transpose(img, (1, 2, 0))
-
-    return img
-
-# convert torch tensor to single
-def tensor2single3(img):
-    img = img.data.squeeze().float().cpu().numpy()
-    if img.ndim == 3:
-        img = np.transpose(img, (1, 2, 0))
-    elif img.ndim == 2:
-        img = np.expand_dims(img, axis=2)
-    return img
-
-
-def single2tensor5(img):
-    return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float().unsqueeze(0)
-
-
-def single32tensor5(img):
-    return torch.from_numpy(np.ascontiguousarray(img)).float().unsqueeze(0).unsqueeze(0)
-
-
-def single42tensor4(img):
-    return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float()
-
-
-# from skimage.io import imread, imsave
-def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)):
-    '''
-    Converts a torch Tensor into an image Numpy array of BGR channel order
-    Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order
-    Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default)
-    '''
-    tensor = tensor.squeeze().float().cpu().clamp_(*min_max)  # squeeze first, then clamp
-    tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0])  # to range [0,1]
-    n_dim = tensor.dim()
-    if n_dim == 4:
-        n_img = len(tensor)
-        img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy()
-        img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0))  # HWC, BGR
-    elif n_dim == 3:
-        img_np = tensor.numpy()
-        img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0))  # HWC, BGR
-    elif n_dim == 2:
-        img_np = tensor.numpy()
-    else:
-        raise TypeError(
-            'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim))
-    if out_type == np.uint8:
-        img_np = (img_np * 255.0).round()
-        # Important. Unlike matlab, numpy.unit8() WILL NOT round by default.
-    return img_np.astype(out_type)
-
-
-'''
-# --------------------------------------------
-# Augmentation, flipe and/or rotate
-# --------------------------------------------
-# The following two are enough.
-# (1) augmet_img: numpy image of WxHxC or WxH
-# (2) augment_img_tensor4: tensor image 1xCxWxH
-# --------------------------------------------
-'''
-
-
-def augment_img(img, mode=0):
-    '''Kai Zhang (github: https://github.com/cszn)
-    '''
-    if mode == 0:
-        return img
-    elif mode == 1:
-        return np.flipud(np.rot90(img))
-    elif mode == 2:
-        return np.flipud(img)
-    elif mode == 3:
-        return np.rot90(img, k=3)
-    elif mode == 4:
-        return np.flipud(np.rot90(img, k=2))
-    elif mode == 5:
-        return np.rot90(img)
-    elif mode == 6:
-        return np.rot90(img, k=2)
-    elif mode == 7:
-        return np.flipud(np.rot90(img, k=3))
-
-
-def augment_img_tensor4(img, mode=0):
-    '''Kai Zhang (github: https://github.com/cszn)
-    '''
-    if mode == 0:
-        return img
-    elif mode == 1:
-        return img.rot90(1, [2, 3]).flip([2])
-    elif mode == 2:
-        return img.flip([2])
-    elif mode == 3:
-        return img.rot90(3, [2, 3])
-    elif mode == 4:
-        return img.rot90(2, [2, 3]).flip([2])
-    elif mode == 5:
-        return img.rot90(1, [2, 3])
-    elif mode == 6:
-        return img.rot90(2, [2, 3])
-    elif mode == 7:
-        return img.rot90(3, [2, 3]).flip([2])
-
-
-def augment_img_tensor(img, mode=0):
-    '''Kai Zhang (github: https://github.com/cszn)
-    '''
-    img_size = img.size()
-    img_np = img.data.cpu().numpy()
-    if len(img_size) == 3:
-        img_np = np.transpose(img_np, (1, 2, 0))
-    elif len(img_size) == 4:
-        img_np = np.transpose(img_np, (2, 3, 1, 0))
-    img_np = augment_img(img_np, mode=mode)
-    img_tensor = torch.from_numpy(np.ascontiguousarray(img_np))
-    if len(img_size) == 3:
-        img_tensor = img_tensor.permute(2, 0, 1)
-    elif len(img_size) == 4:
-        img_tensor = img_tensor.permute(3, 2, 0, 1)
-
-    return img_tensor.type_as(img)
-
-
-def augment_img_np3(img, mode=0):
-    if mode == 0:
-        return img
-    elif mode == 1:
-        return img.transpose(1, 0, 2)
-    elif mode == 2:
-        return img[::-1, :, :]
-    elif mode == 3:
-        img = img[::-1, :, :]
-        img = img.transpose(1, 0, 2)
-        return img
-    elif mode == 4:
-        return img[:, ::-1, :]
-    elif mode == 5:
-        img = img[:, ::-1, :]
-        img = img.transpose(1, 0, 2)
-        return img
-    elif mode == 6:
-        img = img[:, ::-1, :]
-        img = img[::-1, :, :]
-        return img
-    elif mode == 7:
-        img = img[:, ::-1, :]
-        img = img[::-1, :, :]
-        img = img.transpose(1, 0, 2)
-        return img
-
-
-def augment_imgs(img_list, hflip=True, rot=True):
-    # horizontal flip OR rotate
-    hflip = hflip and random.random() < 0.5
-    vflip = rot and random.random() < 0.5
-    rot90 = rot and random.random() < 0.5
-
-    def _augment(img):
-        if hflip:
-            img = img[:, ::-1, :]
-        if vflip:
-            img = img[::-1, :, :]
-        if rot90:
-            img = img.transpose(1, 0, 2)
-        return img
-
-    return [_augment(img) for img in img_list]
-
-
-'''
-# --------------------------------------------
-# modcrop and shave
-# --------------------------------------------
-'''
-
-
-def modcrop(img_in, scale):
-    # img_in: Numpy, HWC or HW
-    img = np.copy(img_in)
-    if img.ndim == 2:
-        H, W = img.shape
-        H_r, W_r = H % scale, W % scale
-        img = img[:H - H_r, :W - W_r]
-    elif img.ndim == 3:
-        H, W, C = img.shape
-        H_r, W_r = H % scale, W % scale
-        img = img[:H - H_r, :W - W_r, :]
-    else:
-        raise ValueError('Wrong img ndim: [{:d}].'.format(img.ndim))
-    return img
-
-
-def shave(img_in, border=0):
-    # img_in: Numpy, HWC or HW
-    img = np.copy(img_in)
-    h, w = img.shape[:2]
-    img = img[border:h-border, border:w-border]
-    return img
-
-
-'''
-# --------------------------------------------
-# image processing process on numpy image
-# channel_convert(in_c, tar_type, img_list):
-# rgb2ycbcr(img, only_y=True):
-# bgr2ycbcr(img, only_y=True):
-# ycbcr2rgb(img):
-# --------------------------------------------
-'''
-
-
-def rgb2ycbcr(img, only_y=True):
-    '''same as matlab rgb2ycbcr
-    only_y: only return Y channel
-    Input:
-        uint8, [0, 255]
-        float, [0, 1]
-    '''
-    in_img_type = img.dtype
-    img.astype(np.float32)
-    if in_img_type != np.uint8:
-        img *= 255.
-    # convert
-    if only_y:
-        rlt = np.dot(img, [65.481, 128.553, 24.966]) / 255.0 + 16.0
-    else:
-        rlt = np.matmul(img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786],
-                              [24.966, 112.0, -18.214]]) / 255.0 + [16, 128, 128]
-    if in_img_type == np.uint8:
-        rlt = rlt.round()
-    else:
-        rlt /= 255.
-    return rlt.astype(in_img_type)
-
-
-def ycbcr2rgb(img):
-    '''same as matlab ycbcr2rgb
-    Input:
-        uint8, [0, 255]
-        float, [0, 1]
-    '''
-    in_img_type = img.dtype
-    img.astype(np.float32)
-    if in_img_type != np.uint8:
-        img *= 255.
-    # convert
-    rlt = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071],
-                          [0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836]
-    if in_img_type == np.uint8:
-        rlt = rlt.round()
-    else:
-        rlt /= 255.
-    return rlt.astype(in_img_type)
-
-
-def bgr2ycbcr(img, only_y=True):
-    '''bgr version of rgb2ycbcr
-    only_y: only return Y channel
-    Input:
-        uint8, [0, 255]
-        float, [0, 1]
-    '''
-    in_img_type = img.dtype
-    img.astype(np.float32)
-    if in_img_type != np.uint8:
-        img *= 255.
-    # convert
-    if only_y:
-        rlt = np.dot(img, [24.966, 128.553, 65.481]) / 255.0 + 16.0
-    else:
-        rlt = np.matmul(img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786],
-                              [65.481, -37.797, 112.0]]) / 255.0 + [16, 128, 128]
-    if in_img_type == np.uint8:
-        rlt = rlt.round()
-    else:
-        rlt /= 255.
-    return rlt.astype(in_img_type)
-
-
-def channel_convert(in_c, tar_type, img_list):
-    # conversion among BGR, gray and y
-    if in_c == 3 and tar_type == 'gray':  # BGR to gray
-        gray_list = [cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) for img in img_list]
-        return [np.expand_dims(img, axis=2) for img in gray_list]
-    elif in_c == 3 and tar_type == 'y':  # BGR to y
-        y_list = [bgr2ycbcr(img, only_y=True) for img in img_list]
-        return [np.expand_dims(img, axis=2) for img in y_list]
-    elif in_c == 1 and tar_type == 'RGB':  # gray/y to BGR
-        return [cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) for img in img_list]
-    else:
-        return img_list
-
-
-'''
-# --------------------------------------------
-# metric, PSNR and SSIM
-# --------------------------------------------
-'''
-
-
-# --------------------------------------------
-# PSNR
-# --------------------------------------------
-def calculate_psnr(img1, img2, border=0):
-    # img1 and img2 have range [0, 255]
-    #img1 = img1.squeeze()
-    #img2 = img2.squeeze()
-    if not img1.shape == img2.shape:
-        raise ValueError('Input images must have the same dimensions.')
-    h, w = img1.shape[:2]
-    img1 = img1[border:h-border, border:w-border]
-    img2 = img2[border:h-border, border:w-border]
-
-    img1 = img1.astype(np.float64)
-    img2 = img2.astype(np.float64)
-    mse = np.mean((img1 - img2)**2)
-    if mse == 0:
-        return float('inf')
-    return 20 * math.log10(255.0 / math.sqrt(mse))
-
-
-# --------------------------------------------
-# SSIM
-# --------------------------------------------
-def calculate_ssim(img1, img2, border=0):
-    '''calculate SSIM
-    the same outputs as MATLAB's
-    img1, img2: [0, 255]
-    '''
-    #img1 = img1.squeeze()
-    #img2 = img2.squeeze()
-    if not img1.shape == img2.shape:
-        raise ValueError('Input images must have the same dimensions.')
-    h, w = img1.shape[:2]
-    img1 = img1[border:h-border, border:w-border]
-    img2 = img2[border:h-border, border:w-border]
-
-    if img1.ndim == 2:
-        return ssim(img1, img2)
-    elif img1.ndim == 3:
-        if img1.shape[2] == 3:
-            ssims = []
-            for i in range(3):
-                ssims.append(ssim(img1[:,:,i], img2[:,:,i]))
-            return np.array(ssims).mean()
-        elif img1.shape[2] == 1:
-            return ssim(np.squeeze(img1), np.squeeze(img2))
-    else:
-        raise ValueError('Wrong input image dimensions.')
-
-
-def ssim(img1, img2):
-    C1 = (0.01 * 255)**2
-    C2 = (0.03 * 255)**2
-
-    img1 = img1.astype(np.float64)
-    img2 = img2.astype(np.float64)
-    kernel = cv2.getGaussianKernel(11, 1.5)
-    window = np.outer(kernel, kernel.transpose())
-
-    mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5]  # valid
-    mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
-    mu1_sq = mu1**2
-    mu2_sq = mu2**2
-    mu1_mu2 = mu1 * mu2
-    sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
-    sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
-    sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
-
-    ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
-                                                            (sigma1_sq + sigma2_sq + C2))
-    return ssim_map.mean()
-
-
-'''
-# --------------------------------------------
-# matlab's bicubic imresize (numpy and torch) [0, 1]
-# --------------------------------------------
-'''
-
-
-# matlab 'imresize' function, now only support 'bicubic'
-def cubic(x):
-    absx = torch.abs(x)
-    absx2 = absx**2
-    absx3 = absx**3
-    return (1.5*absx3 - 2.5*absx2 + 1) * ((absx <= 1).type_as(absx)) + \
-        (-0.5*absx3 + 2.5*absx2 - 4*absx + 2) * (((absx > 1)*(absx <= 2)).type_as(absx))
-
-
-def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing):
-    if (scale < 1) and (antialiasing):
-        # Use a modified kernel to simultaneously interpolate and antialias- larger kernel width
-        kernel_width = kernel_width / scale
-
-    # Output-space coordinates
-    x = torch.linspace(1, out_length, out_length)
-
-    # Input-space coordinates. Calculate the inverse mapping such that 0.5
-    # in output space maps to 0.5 in input space, and 0.5+scale in output
-    # space maps to 1.5 in input space.
-    u = x / scale + 0.5 * (1 - 1 / scale)
-
-    # What is the left-most pixel that can be involved in the computation?
-    left = torch.floor(u - kernel_width / 2)
-
-    # What is the maximum number of pixels that can be involved in the
-    # computation?  Note: it's OK to use an extra pixel here; if the
-    # corresponding weights are all zero, it will be eliminated at the end
-    # of this function.
-    P = math.ceil(kernel_width) + 2
-
-    # The indices of the input pixels involved in computing the k-th output
-    # pixel are in row k of the indices matrix.
-    indices = left.view(out_length, 1).expand(out_length, P) + torch.linspace(0, P - 1, P).view(
-        1, P).expand(out_length, P)
-
-    # The weights used to compute the k-th output pixel are in row k of the
-    # weights matrix.
-    distance_to_center = u.view(out_length, 1).expand(out_length, P) - indices
-    # apply cubic kernel
-    if (scale < 1) and (antialiasing):
-        weights = scale * cubic(distance_to_center * scale)
-    else:
-        weights = cubic(distance_to_center)
-    # Normalize the weights matrix so that each row sums to 1.
-    weights_sum = torch.sum(weights, 1).view(out_length, 1)
-    weights = weights / weights_sum.expand(out_length, P)
-
-    # If a column in weights is all zero, get rid of it. only consider the first and last column.
-    weights_zero_tmp = torch.sum((weights == 0), 0)
-    if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6):
-        indices = indices.narrow(1, 1, P - 2)
-        weights = weights.narrow(1, 1, P - 2)
-    if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6):
-        indices = indices.narrow(1, 0, P - 2)
-        weights = weights.narrow(1, 0, P - 2)
-    weights = weights.contiguous()
-    indices = indices.contiguous()
-    sym_len_s = -indices.min() + 1
-    sym_len_e = indices.max() - in_length
-    indices = indices + sym_len_s - 1
-    return weights, indices, int(sym_len_s), int(sym_len_e)
-
-
-# --------------------------------------------
-# imresize for tensor image [0, 1]
-# --------------------------------------------
-def imresize(img, scale, antialiasing=True):
-    # Now the scale should be the same for H and W
-    # input: img: pytorch tensor, CHW or HW [0,1]
-    # output: CHW or HW [0,1] w/o round
-    need_squeeze = True if img.dim() == 2 else False
-    if need_squeeze:
-        img.unsqueeze_(0)
-    in_C, in_H, in_W = img.size()
-    out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
-    kernel_width = 4
-    kernel = 'cubic'
-
-    # Return the desired dimension order for performing the resize.  The
-    # strategy is to perform the resize first along the dimension with the
-    # smallest scale factor.
-    # Now we do not support this.
-
-    # get weights and indices
-    weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
-        in_H, out_H, scale, kernel, kernel_width, antialiasing)
-    weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
-        in_W, out_W, scale, kernel, kernel_width, antialiasing)
-    # process H dimension
-    # symmetric copying
-    img_aug = torch.FloatTensor(in_C, in_H + sym_len_Hs + sym_len_He, in_W)
-    img_aug.narrow(1, sym_len_Hs, in_H).copy_(img)
-
-    sym_patch = img[:, :sym_len_Hs, :]
-    inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
-    sym_patch_inv = sym_patch.index_select(1, inv_idx)
-    img_aug.narrow(1, 0, sym_len_Hs).copy_(sym_patch_inv)
-
-    sym_patch = img[:, -sym_len_He:, :]
-    inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
-    sym_patch_inv = sym_patch.index_select(1, inv_idx)
-    img_aug.narrow(1, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
-
-    out_1 = torch.FloatTensor(in_C, out_H, in_W)
-    kernel_width = weights_H.size(1)
-    for i in range(out_H):
-        idx = int(indices_H[i][0])
-        for j in range(out_C):
-            out_1[j, i, :] = img_aug[j, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i])
-
-    # process W dimension
-    # symmetric copying
-    out_1_aug = torch.FloatTensor(in_C, out_H, in_W + sym_len_Ws + sym_len_We)
-    out_1_aug.narrow(2, sym_len_Ws, in_W).copy_(out_1)
-
-    sym_patch = out_1[:, :, :sym_len_Ws]
-    inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
-    sym_patch_inv = sym_patch.index_select(2, inv_idx)
-    out_1_aug.narrow(2, 0, sym_len_Ws).copy_(sym_patch_inv)
-
-    sym_patch = out_1[:, :, -sym_len_We:]
-    inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
-    sym_patch_inv = sym_patch.index_select(2, inv_idx)
-    out_1_aug.narrow(2, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
-
-    out_2 = torch.FloatTensor(in_C, out_H, out_W)
-    kernel_width = weights_W.size(1)
-    for i in range(out_W):
-        idx = int(indices_W[i][0])
-        for j in range(out_C):
-            out_2[j, :, i] = out_1_aug[j, :, idx:idx + kernel_width].mv(weights_W[i])
-    if need_squeeze:
-        out_2.squeeze_()
-    return out_2
-
-
-# --------------------------------------------
-# imresize for numpy image [0, 1]
-# --------------------------------------------
-def imresize_np(img, scale, antialiasing=True):
-    # Now the scale should be the same for H and W
-    # input: img: Numpy, HWC or HW [0,1]
-    # output: HWC or HW [0,1] w/o round
-    img = torch.from_numpy(img)
-    need_squeeze = True if img.dim() == 2 else False
-    if need_squeeze:
-        img.unsqueeze_(2)
-
-    in_H, in_W, in_C = img.size()
-    out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
-    kernel_width = 4
-    kernel = 'cubic'
-
-    # Return the desired dimension order for performing the resize.  The
-    # strategy is to perform the resize first along the dimension with the
-    # smallest scale factor.
-    # Now we do not support this.
-
-    # get weights and indices
-    weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
-        in_H, out_H, scale, kernel, kernel_width, antialiasing)
-    weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
-        in_W, out_W, scale, kernel, kernel_width, antialiasing)
-    # process H dimension
-    # symmetric copying
-    img_aug = torch.FloatTensor(in_H + sym_len_Hs + sym_len_He, in_W, in_C)
-    img_aug.narrow(0, sym_len_Hs, in_H).copy_(img)
-
-    sym_patch = img[:sym_len_Hs, :, :]
-    inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
-    sym_patch_inv = sym_patch.index_select(0, inv_idx)
-    img_aug.narrow(0, 0, sym_len_Hs).copy_(sym_patch_inv)
-
-    sym_patch = img[-sym_len_He:, :, :]
-    inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
-    sym_patch_inv = sym_patch.index_select(0, inv_idx)
-    img_aug.narrow(0, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
-
-    out_1 = torch.FloatTensor(out_H, in_W, in_C)
-    kernel_width = weights_H.size(1)
-    for i in range(out_H):
-        idx = int(indices_H[i][0])
-        for j in range(out_C):
-            out_1[i, :, j] = img_aug[idx:idx + kernel_width, :, j].transpose(0, 1).mv(weights_H[i])
-
-    # process W dimension
-    # symmetric copying
-    out_1_aug = torch.FloatTensor(out_H, in_W + sym_len_Ws + sym_len_We, in_C)
-    out_1_aug.narrow(1, sym_len_Ws, in_W).copy_(out_1)
-
-    sym_patch = out_1[:, :sym_len_Ws, :]
-    inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
-    sym_patch_inv = sym_patch.index_select(1, inv_idx)
-    out_1_aug.narrow(1, 0, sym_len_Ws).copy_(sym_patch_inv)
-
-    sym_patch = out_1[:, -sym_len_We:, :]
-    inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
-    sym_patch_inv = sym_patch.index_select(1, inv_idx)
-    out_1_aug.narrow(1, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
-
-    out_2 = torch.FloatTensor(out_H, out_W, in_C)
-    kernel_width = weights_W.size(1)
-    for i in range(out_W):
-        idx = int(indices_W[i][0])
-        for j in range(out_C):
-            out_2[:, i, j] = out_1_aug[:, idx:idx + kernel_width, j].mv(weights_W[i])
-    if need_squeeze:
-        out_2.squeeze_()
-
-    return out_2.numpy()
-
-
-if __name__ == '__main__':
-    print('---')
-#    img = imread_uint('test.bmp', 3)
-#    img = uint2single(img)
-#    img_bicubic = imresize_np(img, 1/4)
\ No newline at end of file
diff --git a/ldm/modules/midas/__init__.py b/ldm/modules/midas/__init__.py
deleted file mode 100644
index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000
diff --git a/ldm/modules/midas/api.py b/ldm/modules/midas/api.py
deleted file mode 100644
index 7699a37804130b841ade53491fa1abbddbf94564..0000000000000000000000000000000000000000
--- a/ldm/modules/midas/api.py
+++ /dev/null
@@ -1,170 +0,0 @@
-# based on https://github.com/isl-org/MiDaS
-
-import cv2
-import torch
-import torch.nn as nn
-from torchvision.transforms import Compose
-
-from ldm.modules.midas.midas.dpt_depth import DPTDepthModel
-from ldm.modules.midas.midas.midas_net import MidasNet
-from ldm.modules.midas.midas.midas_net_custom import MidasNet_small
-from ldm.modules.midas.midas.transforms import Resize, NormalizeImage, PrepareForNet
-
-
-ISL_PATHS = {
-    "dpt_large": "/fsx/robin/midas_models/dpt_large-midas-2f21e586.pt",  # TODO: adapt
-    "dpt_hybrid": "/fsx/robin/midas_models/dpt_hybrid-midas-501f0c75.pt",  # TODO: adapt
-    "midas_v21": "",
-    "midas_v21_small": "",
-}
-
-
-def disabled_train(self, mode=True):
-    """Overwrite model.train with this function to make sure train/eval mode
-    does not change anymore."""
-    return self
-
-
-def load_midas_transform(model_type):
-    # https://github.com/isl-org/MiDaS/blob/master/run.py
-    # load transform only
-    if model_type == "dpt_large":  # DPT-Large
-        net_w, net_h = 384, 384
-        resize_mode = "minimal"
-        normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
-
-    elif model_type == "dpt_hybrid":  # DPT-Hybrid
-        net_w, net_h = 384, 384
-        resize_mode = "minimal"
-        normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
-
-    elif model_type == "midas_v21":
-        net_w, net_h = 384, 384
-        resize_mode = "upper_bound"
-        normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
-
-    elif model_type == "midas_v21_small":
-        net_w, net_h = 256, 256
-        resize_mode = "upper_bound"
-        normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
-
-    else:
-        assert False, f"model_type '{model_type}' not implemented, use: --model_type large"
-
-    transform = Compose(
-        [
-            Resize(
-                net_w,
-                net_h,
-                resize_target=None,
-                keep_aspect_ratio=True,
-                ensure_multiple_of=32,
-                resize_method=resize_mode,
-                image_interpolation_method=cv2.INTER_CUBIC,
-            ),
-            normalization,
-            PrepareForNet(),
-        ]
-    )
-
-    return transform
-
-
-def load_model(model_type):
-    # https://github.com/isl-org/MiDaS/blob/master/run.py
-    # load network
-    model_path = ISL_PATHS[model_type]
-    if model_type == "dpt_large":  # DPT-Large
-        model = DPTDepthModel(
-            path=model_path,
-            backbone="vitl16_384",
-            non_negative=True,
-        )
-        net_w, net_h = 384, 384
-        resize_mode = "minimal"
-        normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
-
-    elif model_type == "dpt_hybrid":  # DPT-Hybrid
-        model = DPTDepthModel(
-            path=model_path,
-            backbone="vitb_rn50_384",
-            non_negative=True,
-        )
-        net_w, net_h = 384, 384
-        resize_mode = "minimal"
-        normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
-
-    elif model_type == "midas_v21":
-        model = MidasNet(model_path, non_negative=True)
-        net_w, net_h = 384, 384
-        resize_mode = "upper_bound"
-        normalization = NormalizeImage(
-            mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
-        )
-
-    elif model_type == "midas_v21_small":
-        model = MidasNet_small(model_path, features=64, backbone="efficientnet_lite3", exportable=True,
-                               non_negative=True, blocks={'expand': True})
-        net_w, net_h = 256, 256
-        resize_mode = "upper_bound"
-        normalization = NormalizeImage(
-            mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
-        )
-
-    else:
-        print(f"model_type '{model_type}' not implemented, use: --model_type large")
-        assert False
-
-    transform = Compose(
-        [
-            Resize(
-                net_w,
-                net_h,
-                resize_target=None,
-                keep_aspect_ratio=True,
-                ensure_multiple_of=32,
-                resize_method=resize_mode,
-                image_interpolation_method=cv2.INTER_CUBIC,
-            ),
-            normalization,
-            PrepareForNet(),
-        ]
-    )
-
-    return model.eval(), transform
-
-
-class MiDaSInference(nn.Module):
-    MODEL_TYPES_TORCH_HUB = [
-        "DPT_Large",
-        "DPT_Hybrid",
-        "MiDaS_small"
-    ]
-    MODEL_TYPES_ISL = [
-        "dpt_large",
-        "dpt_hybrid",
-        "midas_v21",
-        "midas_v21_small",
-    ]
-
-    def __init__(self, model_type):
-        super().__init__()
-        assert (model_type in self.MODEL_TYPES_ISL)
-        model, _ = load_model(model_type)
-        self.model = model
-        self.model.train = disabled_train
-
-    def forward(self, x):
-        # x in 0..1 as produced by calling self.transform on a 0..1 float64 numpy array
-        # NOTE: we expect that the correct transform has been called during dataloading.
-        with torch.no_grad():
-            prediction = self.model(x)
-            prediction = torch.nn.functional.interpolate(
-                prediction.unsqueeze(1),
-                size=x.shape[2:],
-                mode="bicubic",
-                align_corners=False,
-            )
-        assert prediction.shape == (x.shape[0], 1, x.shape[2], x.shape[3])
-        return prediction
-
diff --git a/ldm/modules/midas/midas/__init__.py b/ldm/modules/midas/midas/__init__.py
deleted file mode 100644
index e69de29bb2d1d6434b8b29ae775ad8c2e48c5391..0000000000000000000000000000000000000000
diff --git a/ldm/modules/midas/midas/base_model.py b/ldm/modules/midas/midas/base_model.py
deleted file mode 100644
index 5cf430239b47ec5ec07531263f26f5c24a2311cd..0000000000000000000000000000000000000000
--- a/ldm/modules/midas/midas/base_model.py
+++ /dev/null
@@ -1,16 +0,0 @@
-import torch
-
-
-class BaseModel(torch.nn.Module):
-    def load(self, path):
-        """Load model from file.
-
-        Args:
-            path (str): file path
-        """
-        parameters = torch.load(path, map_location=torch.device('cpu'))
-
-        if "optimizer" in parameters:
-            parameters = parameters["model"]
-
-        self.load_state_dict(parameters)
diff --git a/ldm/modules/midas/midas/blocks.py b/ldm/modules/midas/midas/blocks.py
deleted file mode 100644
index 2145d18fa98060a618536d9a64fe6589e9be4f78..0000000000000000000000000000000000000000
--- a/ldm/modules/midas/midas/blocks.py
+++ /dev/null
@@ -1,342 +0,0 @@
-import torch
-import torch.nn as nn
-
-from .vit import (
-    _make_pretrained_vitb_rn50_384,
-    _make_pretrained_vitl16_384,
-    _make_pretrained_vitb16_384,
-    forward_vit,
-)
-
-def _make_encoder(backbone, features, use_pretrained, groups=1, expand=False, exportable=True, hooks=None, use_vit_only=False, use_readout="ignore",):
-    if backbone == "vitl16_384":
-        pretrained = _make_pretrained_vitl16_384(
-            use_pretrained, hooks=hooks, use_readout=use_readout
-        )
-        scratch = _make_scratch(
-            [256, 512, 1024, 1024], features, groups=groups, expand=expand
-        )  # ViT-L/16 - 85.0% Top1 (backbone)
-    elif backbone == "vitb_rn50_384":
-        pretrained = _make_pretrained_vitb_rn50_384(
-            use_pretrained,
-            hooks=hooks,
-            use_vit_only=use_vit_only,
-            use_readout=use_readout,
-        )
-        scratch = _make_scratch(
-            [256, 512, 768, 768], features, groups=groups, expand=expand
-        )  # ViT-H/16 - 85.0% Top1 (backbone)
-    elif backbone == "vitb16_384":
-        pretrained = _make_pretrained_vitb16_384(
-            use_pretrained, hooks=hooks, use_readout=use_readout
-        )
-        scratch = _make_scratch(
-            [96, 192, 384, 768], features, groups=groups, expand=expand
-        )  # ViT-B/16 - 84.6% Top1 (backbone)
-    elif backbone == "resnext101_wsl":
-        pretrained = _make_pretrained_resnext101_wsl(use_pretrained)
-        scratch = _make_scratch([256, 512, 1024, 2048], features, groups=groups, expand=expand)     # efficientnet_lite3  
-    elif backbone == "efficientnet_lite3":
-        pretrained = _make_pretrained_efficientnet_lite3(use_pretrained, exportable=exportable)
-        scratch = _make_scratch([32, 48, 136, 384], features, groups=groups, expand=expand)  # efficientnet_lite3     
-    else:
-        print(f"Backbone '{backbone}' not implemented")
-        assert False
-        
-    return pretrained, scratch
-
-
-def _make_scratch(in_shape, out_shape, groups=1, expand=False):
-    scratch = nn.Module()
-
-    out_shape1 = out_shape
-    out_shape2 = out_shape
-    out_shape3 = out_shape
-    out_shape4 = out_shape
-    if expand==True:
-        out_shape1 = out_shape
-        out_shape2 = out_shape*2
-        out_shape3 = out_shape*4
-        out_shape4 = out_shape*8
-
-    scratch.layer1_rn = nn.Conv2d(
-        in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
-    )
-    scratch.layer2_rn = nn.Conv2d(
-        in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
-    )
-    scratch.layer3_rn = nn.Conv2d(
-        in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
-    )
-    scratch.layer4_rn = nn.Conv2d(
-        in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups
-    )
-
-    return scratch
-
-
-def _make_pretrained_efficientnet_lite3(use_pretrained, exportable=False):
-    efficientnet = torch.hub.load(
-        "rwightman/gen-efficientnet-pytorch",
-        "tf_efficientnet_lite3",
-        pretrained=use_pretrained,
-        exportable=exportable
-    )
-    return _make_efficientnet_backbone(efficientnet)
-
-
-def _make_efficientnet_backbone(effnet):
-    pretrained = nn.Module()
-
-    pretrained.layer1 = nn.Sequential(
-        effnet.conv_stem, effnet.bn1, effnet.act1, *effnet.blocks[0:2]
-    )
-    pretrained.layer2 = nn.Sequential(*effnet.blocks[2:3])
-    pretrained.layer3 = nn.Sequential(*effnet.blocks[3:5])
-    pretrained.layer4 = nn.Sequential(*effnet.blocks[5:9])
-
-    return pretrained
-    
-
-def _make_resnet_backbone(resnet):
-    pretrained = nn.Module()
-    pretrained.layer1 = nn.Sequential(
-        resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool, resnet.layer1
-    )
-
-    pretrained.layer2 = resnet.layer2
-    pretrained.layer3 = resnet.layer3
-    pretrained.layer4 = resnet.layer4
-
-    return pretrained
-
-
-def _make_pretrained_resnext101_wsl(use_pretrained):
-    resnet = torch.hub.load("facebookresearch/WSL-Images", "resnext101_32x8d_wsl")
-    return _make_resnet_backbone(resnet)
-
-
-
-class Interpolate(nn.Module):
-    """Interpolation module.
-    """
-
-    def __init__(self, scale_factor, mode, align_corners=False):
-        """Init.
-
-        Args:
-            scale_factor (float): scaling
-            mode (str): interpolation mode
-        """
-        super(Interpolate, self).__init__()
-
-        self.interp = nn.functional.interpolate
-        self.scale_factor = scale_factor
-        self.mode = mode
-        self.align_corners = align_corners
-
-    def forward(self, x):
-        """Forward pass.
-
-        Args:
-            x (tensor): input
-
-        Returns:
-            tensor: interpolated data
-        """
-
-        x = self.interp(
-            x, scale_factor=self.scale_factor, mode=self.mode, align_corners=self.align_corners
-        )
-
-        return x
-
-
-class ResidualConvUnit(nn.Module):
-    """Residual convolution module.
-    """
-
-    def __init__(self, features):
-        """Init.
-
-        Args:
-            features (int): number of features
-        """
-        super().__init__()
-
-        self.conv1 = nn.Conv2d(
-            features, features, kernel_size=3, stride=1, padding=1, bias=True
-        )
-
-        self.conv2 = nn.Conv2d(
-            features, features, kernel_size=3, stride=1, padding=1, bias=True
-        )
-
-        self.relu = nn.ReLU(inplace=True)
-
-    def forward(self, x):
-        """Forward pass.
-
-        Args:
-            x (tensor): input
-
-        Returns:
-            tensor: output
-        """
-        out = self.relu(x)
-        out = self.conv1(out)
-        out = self.relu(out)
-        out = self.conv2(out)
-
-        return out + x
-
-
-class FeatureFusionBlock(nn.Module):
-    """Feature fusion block.
-    """
-
-    def __init__(self, features):
-        """Init.
-
-        Args:
-            features (int): number of features
-        """
-        super(FeatureFusionBlock, self).__init__()
-
-        self.resConfUnit1 = ResidualConvUnit(features)
-        self.resConfUnit2 = ResidualConvUnit(features)
-
-    def forward(self, *xs):
-        """Forward pass.
-
-        Returns:
-            tensor: output
-        """
-        output = xs[0]
-
-        if len(xs) == 2:
-            output += self.resConfUnit1(xs[1])
-
-        output = self.resConfUnit2(output)
-
-        output = nn.functional.interpolate(
-            output, scale_factor=2, mode="bilinear", align_corners=True
-        )
-
-        return output
-
-
-
-
-class ResidualConvUnit_custom(nn.Module):
-    """Residual convolution module.
-    """
-
-    def __init__(self, features, activation, bn):
-        """Init.
-
-        Args:
-            features (int): number of features
-        """
-        super().__init__()
-
-        self.bn = bn
-
-        self.groups=1
-
-        self.conv1 = nn.Conv2d(
-            features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
-        )
-        
-        self.conv2 = nn.Conv2d(
-            features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups
-        )
-
-        if self.bn==True:
-            self.bn1 = nn.BatchNorm2d(features)
-            self.bn2 = nn.BatchNorm2d(features)
-
-        self.activation = activation
-
-        self.skip_add = nn.quantized.FloatFunctional()
-
-    def forward(self, x):
-        """Forward pass.
-
-        Args:
-            x (tensor): input
-
-        Returns:
-            tensor: output
-        """
-        
-        out = self.activation(x)
-        out = self.conv1(out)
-        if self.bn==True:
-            out = self.bn1(out)
-       
-        out = self.activation(out)
-        out = self.conv2(out)
-        if self.bn==True:
-            out = self.bn2(out)
-
-        if self.groups > 1:
-            out = self.conv_merge(out)
-
-        return self.skip_add.add(out, x)
-
-        # return out + x
-
-
-class FeatureFusionBlock_custom(nn.Module):
-    """Feature fusion block.
-    """
-
-    def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True):
-        """Init.
-
-        Args:
-            features (int): number of features
-        """
-        super(FeatureFusionBlock_custom, self).__init__()
-
-        self.deconv = deconv
-        self.align_corners = align_corners
-
-        self.groups=1
-
-        self.expand = expand
-        out_features = features
-        if self.expand==True:
-            out_features = features//2
-        
-        self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1)
-
-        self.resConfUnit1 = ResidualConvUnit_custom(features, activation, bn)
-        self.resConfUnit2 = ResidualConvUnit_custom(features, activation, bn)
-        
-        self.skip_add = nn.quantized.FloatFunctional()
-
-    def forward(self, *xs):
-        """Forward pass.
-
-        Returns:
-            tensor: output
-        """
-        output = xs[0]
-
-        if len(xs) == 2:
-            res = self.resConfUnit1(xs[1])
-            output = self.skip_add.add(output, res)
-            # output += res
-
-        output = self.resConfUnit2(output)
-
-        output = nn.functional.interpolate(
-            output, scale_factor=2, mode="bilinear", align_corners=self.align_corners
-        )
-
-        output = self.out_conv(output)
-
-        return output
-
diff --git a/ldm/modules/midas/midas/dpt_depth.py b/ldm/modules/midas/midas/dpt_depth.py
deleted file mode 100644
index 4e9aab5d2767dffea39da5b3f30e2798688216f1..0000000000000000000000000000000000000000
--- a/ldm/modules/midas/midas/dpt_depth.py
+++ /dev/null
@@ -1,109 +0,0 @@
-import torch
-import torch.nn as nn
-import torch.nn.functional as F
-
-from .base_model import BaseModel
-from .blocks import (
-    FeatureFusionBlock,
-    FeatureFusionBlock_custom,
-    Interpolate,
-    _make_encoder,
-    forward_vit,
-)
-
-
-def _make_fusion_block(features, use_bn):
-    return FeatureFusionBlock_custom(
-        features,
-        nn.ReLU(False),
-        deconv=False,
-        bn=use_bn,
-        expand=False,
-        align_corners=True,
-    )
-
-
-class DPT(BaseModel):
-    def __init__(
-        self,
-        head,
-        features=256,
-        backbone="vitb_rn50_384",
-        readout="project",
-        channels_last=False,
-        use_bn=False,
-    ):
-
-        super(DPT, self).__init__()
-
-        self.channels_last = channels_last
-
-        hooks = {
-            "vitb_rn50_384": [0, 1, 8, 11],
-            "vitb16_384": [2, 5, 8, 11],
-            "vitl16_384": [5, 11, 17, 23],
-        }
-
-        # Instantiate backbone and reassemble blocks
-        self.pretrained, self.scratch = _make_encoder(
-            backbone,
-            features,
-            False, # Set to true of you want to train from scratch, uses ImageNet weights
-            groups=1,
-            expand=False,
-            exportable=False,
-            hooks=hooks[backbone],
-            use_readout=readout,
-        )
-
-        self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
-        self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
-        self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
-        self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
-
-        self.scratch.output_conv = head
-
-
-    def forward(self, x):
-        if self.channels_last == True:
-            x.contiguous(memory_format=torch.channels_last)
-
-        layer_1, layer_2, layer_3, layer_4 = forward_vit(self.pretrained, x)
-
-        layer_1_rn = self.scratch.layer1_rn(layer_1)
-        layer_2_rn = self.scratch.layer2_rn(layer_2)
-        layer_3_rn = self.scratch.layer3_rn(layer_3)
-        layer_4_rn = self.scratch.layer4_rn(layer_4)
-
-        path_4 = self.scratch.refinenet4(layer_4_rn)
-        path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
-        path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
-        path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
-
-        out = self.scratch.output_conv(path_1)
-
-        return out
-
-
-class DPTDepthModel(DPT):
-    def __init__(self, path=None, non_negative=True, **kwargs):
-        features = kwargs["features"] if "features" in kwargs else 256
-
-        head = nn.Sequential(
-            nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1),
-            Interpolate(scale_factor=2, mode="bilinear", align_corners=True),
-            nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1),
-            nn.ReLU(True),
-            nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
-            nn.ReLU(True) if non_negative else nn.Identity(),
-            nn.Identity(),
-        )
-
-        super().__init__(head, **kwargs)
-
-        if path is not None:
-           self.load(path)
-
-    def forward(self, x):
-        return super().forward(x).squeeze(dim=1)
-
diff --git a/ldm/modules/midas/midas/midas_net.py b/ldm/modules/midas/midas/midas_net.py
deleted file mode 100644
index 8a954977800b0a0f48807e80fa63041910e33c1f..0000000000000000000000000000000000000000
--- a/ldm/modules/midas/midas/midas_net.py
+++ /dev/null
@@ -1,76 +0,0 @@
-"""MidashNet: Network for monocular depth estimation trained by mixing several datasets.
-This file contains code that is adapted from
-https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
-"""
-import torch
-import torch.nn as nn
-
-from .base_model import BaseModel
-from .blocks import FeatureFusionBlock, Interpolate, _make_encoder
-
-
-class MidasNet(BaseModel):
-    """Network for monocular depth estimation.
-    """
-
-    def __init__(self, path=None, features=256, non_negative=True):
-        """Init.
-
-        Args:
-            path (str, optional): Path to saved model. Defaults to None.
-            features (int, optional): Number of features. Defaults to 256.
-            backbone (str, optional): Backbone network for encoder. Defaults to resnet50
-        """
-        print("Loading weights: ", path)
-
-        super(MidasNet, self).__init__()
-
-        use_pretrained = False if path is None else True
-
-        self.pretrained, self.scratch = _make_encoder(backbone="resnext101_wsl", features=features, use_pretrained=use_pretrained)
-
-        self.scratch.refinenet4 = FeatureFusionBlock(features)
-        self.scratch.refinenet3 = FeatureFusionBlock(features)
-        self.scratch.refinenet2 = FeatureFusionBlock(features)
-        self.scratch.refinenet1 = FeatureFusionBlock(features)
-
-        self.scratch.output_conv = nn.Sequential(
-            nn.Conv2d(features, 128, kernel_size=3, stride=1, padding=1),
-            Interpolate(scale_factor=2, mode="bilinear"),
-            nn.Conv2d(128, 32, kernel_size=3, stride=1, padding=1),
-            nn.ReLU(True),
-            nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
-            nn.ReLU(True) if non_negative else nn.Identity(),
-        )
-
-        if path:
-            self.load(path)
-
-    def forward(self, x):
-        """Forward pass.
-
-        Args:
-            x (tensor): input data (image)
-
-        Returns:
-            tensor: depth
-        """
-
-        layer_1 = self.pretrained.layer1(x)
-        layer_2 = self.pretrained.layer2(layer_1)
-        layer_3 = self.pretrained.layer3(layer_2)
-        layer_4 = self.pretrained.layer4(layer_3)
-
-        layer_1_rn = self.scratch.layer1_rn(layer_1)
-        layer_2_rn = self.scratch.layer2_rn(layer_2)
-        layer_3_rn = self.scratch.layer3_rn(layer_3)
-        layer_4_rn = self.scratch.layer4_rn(layer_4)
-
-        path_4 = self.scratch.refinenet4(layer_4_rn)
-        path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
-        path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
-        path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
-
-        out = self.scratch.output_conv(path_1)
-
-        return torch.squeeze(out, dim=1)
diff --git a/ldm/modules/midas/midas/midas_net_custom.py b/ldm/modules/midas/midas/midas_net_custom.py
deleted file mode 100644
index 50e4acb5e53d5fabefe3dde16ab49c33c2b7797c..0000000000000000000000000000000000000000
--- a/ldm/modules/midas/midas/midas_net_custom.py
+++ /dev/null
@@ -1,128 +0,0 @@
-"""MidashNet: Network for monocular depth estimation trained by mixing several datasets.
-This file contains code that is adapted from
-https://github.com/thomasjpfan/pytorch_refinenet/blob/master/pytorch_refinenet/refinenet/refinenet_4cascade.py
-"""
-import torch
-import torch.nn as nn
-
-from .base_model import BaseModel
-from .blocks import FeatureFusionBlock, FeatureFusionBlock_custom, Interpolate, _make_encoder
-
-
-class MidasNet_small(BaseModel):
-    """Network for monocular depth estimation.
-    """
-
-    def __init__(self, path=None, features=64, backbone="efficientnet_lite3", non_negative=True, exportable=True, channels_last=False, align_corners=True,
-        blocks={'expand': True}):
-        """Init.
-
-        Args:
-            path (str, optional): Path to saved model. Defaults to None.
-            features (int, optional): Number of features. Defaults to 256.
-            backbone (str, optional): Backbone network for encoder. Defaults to resnet50
-        """
-        print("Loading weights: ", path)
-
-        super(MidasNet_small, self).__init__()
-
-        use_pretrained = False if path else True
-                
-        self.channels_last = channels_last
-        self.blocks = blocks
-        self.backbone = backbone
-
-        self.groups = 1
-
-        features1=features
-        features2=features
-        features3=features
-        features4=features
-        self.expand = False
-        if "expand" in self.blocks and self.blocks['expand'] == True:
-            self.expand = True
-            features1=features
-            features2=features*2
-            features3=features*4
-            features4=features*8
-
-        self.pretrained, self.scratch = _make_encoder(self.backbone, features, use_pretrained, groups=self.groups, expand=self.expand, exportable=exportable)
-  
-        self.scratch.activation = nn.ReLU(False)    
-
-        self.scratch.refinenet4 = FeatureFusionBlock_custom(features4, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
-        self.scratch.refinenet3 = FeatureFusionBlock_custom(features3, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
-        self.scratch.refinenet2 = FeatureFusionBlock_custom(features2, self.scratch.activation, deconv=False, bn=False, expand=self.expand, align_corners=align_corners)
-        self.scratch.refinenet1 = FeatureFusionBlock_custom(features1, self.scratch.activation, deconv=False, bn=False, align_corners=align_corners)
-
-        
-        self.scratch.output_conv = nn.Sequential(
-            nn.Conv2d(features, features//2, kernel_size=3, stride=1, padding=1, groups=self.groups),
-            Interpolate(scale_factor=2, mode="bilinear"),
-            nn.Conv2d(features//2, 32, kernel_size=3, stride=1, padding=1),
-            self.scratch.activation,
-            nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
-            nn.ReLU(True) if non_negative else nn.Identity(),
-            nn.Identity(),
-        )
-        
-        if path:
-            self.load(path)
-
-
-    def forward(self, x):
-        """Forward pass.
-
-        Args:
-            x (tensor): input data (image)
-
-        Returns:
-            tensor: depth
-        """
-        if self.channels_last==True:
-            print("self.channels_last = ", self.channels_last)
-            x.contiguous(memory_format=torch.channels_last)
-
-
-        layer_1 = self.pretrained.layer1(x)
-        layer_2 = self.pretrained.layer2(layer_1)
-        layer_3 = self.pretrained.layer3(layer_2)
-        layer_4 = self.pretrained.layer4(layer_3)
-        
-        layer_1_rn = self.scratch.layer1_rn(layer_1)
-        layer_2_rn = self.scratch.layer2_rn(layer_2)
-        layer_3_rn = self.scratch.layer3_rn(layer_3)
-        layer_4_rn = self.scratch.layer4_rn(layer_4)
-
-
-        path_4 = self.scratch.refinenet4(layer_4_rn)
-        path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
-        path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
-        path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
-        
-        out = self.scratch.output_conv(path_1)
-
-        return torch.squeeze(out, dim=1)
-
-
-
-def fuse_model(m):
-    prev_previous_type = nn.Identity()
-    prev_previous_name = ''
-    previous_type = nn.Identity()
-    previous_name = ''
-    for name, module in m.named_modules():
-        if prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d and type(module) == nn.ReLU:
-            # print("FUSED ", prev_previous_name, previous_name, name)
-            torch.quantization.fuse_modules(m, [prev_previous_name, previous_name, name], inplace=True)
-        elif prev_previous_type == nn.Conv2d and previous_type == nn.BatchNorm2d:
-            # print("FUSED ", prev_previous_name, previous_name)
-            torch.quantization.fuse_modules(m, [prev_previous_name, previous_name], inplace=True)
-        # elif previous_type == nn.Conv2d and type(module) == nn.ReLU:
-        #    print("FUSED ", previous_name, name)
-        #    torch.quantization.fuse_modules(m, [previous_name, name], inplace=True)
-
-        prev_previous_type = previous_type
-        prev_previous_name = previous_name
-        previous_type = type(module)
-        previous_name = name
\ No newline at end of file
diff --git a/ldm/modules/midas/midas/transforms.py b/ldm/modules/midas/midas/transforms.py
deleted file mode 100644
index 350cbc11662633ad7f8968eb10be2e7de6e384e9..0000000000000000000000000000000000000000
--- a/ldm/modules/midas/midas/transforms.py
+++ /dev/null
@@ -1,234 +0,0 @@
-import numpy as np
-import cv2
-import math
-
-
-def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA):
-    """Rezise the sample to ensure the given size. Keeps aspect ratio.
-
-    Args:
-        sample (dict): sample
-        size (tuple): image size
-
-    Returns:
-        tuple: new size
-    """
-    shape = list(sample["disparity"].shape)
-
-    if shape[0] >= size[0] and shape[1] >= size[1]:
-        return sample
-
-    scale = [0, 0]
-    scale[0] = size[0] / shape[0]
-    scale[1] = size[1] / shape[1]
-
-    scale = max(scale)
-
-    shape[0] = math.ceil(scale * shape[0])
-    shape[1] = math.ceil(scale * shape[1])
-
-    # resize
-    sample["image"] = cv2.resize(
-        sample["image"], tuple(shape[::-1]), interpolation=image_interpolation_method
-    )
-
-    sample["disparity"] = cv2.resize(
-        sample["disparity"], tuple(shape[::-1]), interpolation=cv2.INTER_NEAREST
-    )
-    sample["mask"] = cv2.resize(
-        sample["mask"].astype(np.float32),
-        tuple(shape[::-1]),
-        interpolation=cv2.INTER_NEAREST,
-    )
-    sample["mask"] = sample["mask"].astype(bool)
-
-    return tuple(shape)
-
-
-class Resize(object):
-    """Resize sample to given size (width, height).
-    """
-
-    def __init__(
-        self,
-        width,
-        height,
-        resize_target=True,
-        keep_aspect_ratio=False,
-        ensure_multiple_of=1,
-        resize_method="lower_bound",
-        image_interpolation_method=cv2.INTER_AREA,
-    ):
-        """Init.
-
-        Args:
-            width (int): desired output width
-            height (int): desired output height
-            resize_target (bool, optional):
-                True: Resize the full sample (image, mask, target).
-                False: Resize image only.
-                Defaults to True.
-            keep_aspect_ratio (bool, optional):
-                True: Keep the aspect ratio of the input sample.
-                Output sample might not have the given width and height, and
-                resize behaviour depends on the parameter 'resize_method'.
-                Defaults to False.
-            ensure_multiple_of (int, optional):
-                Output width and height is constrained to be multiple of this parameter.
-                Defaults to 1.
-            resize_method (str, optional):
-                "lower_bound": Output will be at least as large as the given size.
-                "upper_bound": Output will be at max as large as the given size. (Output size might be smaller than given size.)
-                "minimal": Scale as least as possible.  (Output size might be smaller than given size.)
-                Defaults to "lower_bound".
-        """
-        self.__width = width
-        self.__height = height
-
-        self.__resize_target = resize_target
-        self.__keep_aspect_ratio = keep_aspect_ratio
-        self.__multiple_of = ensure_multiple_of
-        self.__resize_method = resize_method
-        self.__image_interpolation_method = image_interpolation_method
-
-    def constrain_to_multiple_of(self, x, min_val=0, max_val=None):
-        y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int)
-
-        if max_val is not None and y > max_val:
-            y = (np.floor(x / self.__multiple_of) * self.__multiple_of).astype(int)
-
-        if y < min_val:
-            y = (np.ceil(x / self.__multiple_of) * self.__multiple_of).astype(int)
-
-        return y
-
-    def get_size(self, width, height):
-        # determine new height and width
-        scale_height = self.__height / height
-        scale_width = self.__width / width
-
-        if self.__keep_aspect_ratio:
-            if self.__resize_method == "lower_bound":
-                # scale such that output size is lower bound
-                if scale_width > scale_height:
-                    # fit width
-                    scale_height = scale_width
-                else:
-                    # fit height
-                    scale_width = scale_height
-            elif self.__resize_method == "upper_bound":
-                # scale such that output size is upper bound
-                if scale_width < scale_height:
-                    # fit width
-                    scale_height = scale_width
-                else:
-                    # fit height
-                    scale_width = scale_height
-            elif self.__resize_method == "minimal":
-                # scale as least as possbile
-                if abs(1 - scale_width) < abs(1 - scale_height):
-                    # fit width
-                    scale_height = scale_width
-                else:
-                    # fit height
-                    scale_width = scale_height
-            else:
-                raise ValueError(
-                    f"resize_method {self.__resize_method} not implemented"
-                )
-
-        if self.__resize_method == "lower_bound":
-            new_height = self.constrain_to_multiple_of(
-                scale_height * height, min_val=self.__height
-            )
-            new_width = self.constrain_to_multiple_of(
-                scale_width * width, min_val=self.__width
-            )
-        elif self.__resize_method == "upper_bound":
-            new_height = self.constrain_to_multiple_of(
-                scale_height * height, max_val=self.__height
-            )
-            new_width = self.constrain_to_multiple_of(
-                scale_width * width, max_val=self.__width
-            )
-        elif self.__resize_method == "minimal":
-            new_height = self.constrain_to_multiple_of(scale_height * height)
-            new_width = self.constrain_to_multiple_of(scale_width * width)
-        else:
-            raise ValueError(f"resize_method {self.__resize_method} not implemented")
-
-        return (new_width, new_height)
-
-    def __call__(self, sample):
-        width, height = self.get_size(
-            sample["image"].shape[1], sample["image"].shape[0]
-        )
-
-        # resize sample
-        sample["image"] = cv2.resize(
-            sample["image"],
-            (width, height),
-            interpolation=self.__image_interpolation_method,
-        )
-
-        if self.__resize_target:
-            if "disparity" in sample:
-                sample["disparity"] = cv2.resize(
-                    sample["disparity"],
-                    (width, height),
-                    interpolation=cv2.INTER_NEAREST,
-                )
-
-            if "depth" in sample:
-                sample["depth"] = cv2.resize(
-                    sample["depth"], (width, height), interpolation=cv2.INTER_NEAREST
-                )
-
-            sample["mask"] = cv2.resize(
-                sample["mask"].astype(np.float32),
-                (width, height),
-                interpolation=cv2.INTER_NEAREST,
-            )
-            sample["mask"] = sample["mask"].astype(bool)
-
-        return sample
-
-
-class NormalizeImage(object):
-    """Normlize image by given mean and std.
-    """
-
-    def __init__(self, mean, std):
-        self.__mean = mean
-        self.__std = std
-
-    def __call__(self, sample):
-        sample["image"] = (sample["image"] - self.__mean) / self.__std
-
-        return sample
-
-
-class PrepareForNet(object):
-    """Prepare sample for usage as network input.
-    """
-
-    def __init__(self):
-        pass
-
-    def __call__(self, sample):
-        image = np.transpose(sample["image"], (2, 0, 1))
-        sample["image"] = np.ascontiguousarray(image).astype(np.float32)
-
-        if "mask" in sample:
-            sample["mask"] = sample["mask"].astype(np.float32)
-            sample["mask"] = np.ascontiguousarray(sample["mask"])
-
-        if "disparity" in sample:
-            disparity = sample["disparity"].astype(np.float32)
-            sample["disparity"] = np.ascontiguousarray(disparity)
-
-        if "depth" in sample:
-            depth = sample["depth"].astype(np.float32)
-            sample["depth"] = np.ascontiguousarray(depth)
-
-        return sample
diff --git a/ldm/modules/midas/midas/vit.py b/ldm/modules/midas/midas/vit.py
deleted file mode 100644
index ea46b1be88b261b0dec04f3da0256f5f66f88a74..0000000000000000000000000000000000000000
--- a/ldm/modules/midas/midas/vit.py
+++ /dev/null
@@ -1,491 +0,0 @@
-import torch
-import torch.nn as nn
-import timm
-import types
-import math
-import torch.nn.functional as F
-
-
-class Slice(nn.Module):
-    def __init__(self, start_index=1):
-        super(Slice, self).__init__()
-        self.start_index = start_index
-
-    def forward(self, x):
-        return x[:, self.start_index :]
-
-
-class AddReadout(nn.Module):
-    def __init__(self, start_index=1):
-        super(AddReadout, self).__init__()
-        self.start_index = start_index
-
-    def forward(self, x):
-        if self.start_index == 2:
-            readout = (x[:, 0] + x[:, 1]) / 2
-        else:
-            readout = x[:, 0]
-        return x[:, self.start_index :] + readout.unsqueeze(1)
-
-
-class ProjectReadout(nn.Module):
-    def __init__(self, in_features, start_index=1):
-        super(ProjectReadout, self).__init__()
-        self.start_index = start_index
-
-        self.project = nn.Sequential(nn.Linear(2 * in_features, in_features), nn.GELU())
-
-    def forward(self, x):
-        readout = x[:, 0].unsqueeze(1).expand_as(x[:, self.start_index :])
-        features = torch.cat((x[:, self.start_index :], readout), -1)
-
-        return self.project(features)
-
-
-class Transpose(nn.Module):
-    def __init__(self, dim0, dim1):
-        super(Transpose, self).__init__()
-        self.dim0 = dim0
-        self.dim1 = dim1
-
-    def forward(self, x):
-        x = x.transpose(self.dim0, self.dim1)
-        return x
-
-
-def forward_vit(pretrained, x):
-    b, c, h, w = x.shape
-
-    glob = pretrained.model.forward_flex(x)
-
-    layer_1 = pretrained.activations["1"]
-    layer_2 = pretrained.activations["2"]
-    layer_3 = pretrained.activations["3"]
-    layer_4 = pretrained.activations["4"]
-
-    layer_1 = pretrained.act_postprocess1[0:2](layer_1)
-    layer_2 = pretrained.act_postprocess2[0:2](layer_2)
-    layer_3 = pretrained.act_postprocess3[0:2](layer_3)
-    layer_4 = pretrained.act_postprocess4[0:2](layer_4)
-
-    unflatten = nn.Sequential(
-        nn.Unflatten(
-            2,
-            torch.Size(
-                [
-                    h // pretrained.model.patch_size[1],
-                    w // pretrained.model.patch_size[0],
-                ]
-            ),
-        )
-    )
-
-    if layer_1.ndim == 3:
-        layer_1 = unflatten(layer_1)
-    if layer_2.ndim == 3:
-        layer_2 = unflatten(layer_2)
-    if layer_3.ndim == 3:
-        layer_3 = unflatten(layer_3)
-    if layer_4.ndim == 3:
-        layer_4 = unflatten(layer_4)
-
-    layer_1 = pretrained.act_postprocess1[3 : len(pretrained.act_postprocess1)](layer_1)
-    layer_2 = pretrained.act_postprocess2[3 : len(pretrained.act_postprocess2)](layer_2)
-    layer_3 = pretrained.act_postprocess3[3 : len(pretrained.act_postprocess3)](layer_3)
-    layer_4 = pretrained.act_postprocess4[3 : len(pretrained.act_postprocess4)](layer_4)
-
-    return layer_1, layer_2, layer_3, layer_4
-
-
-def _resize_pos_embed(self, posemb, gs_h, gs_w):
-    posemb_tok, posemb_grid = (
-        posemb[:, : self.start_index],
-        posemb[0, self.start_index :],
-    )
-
-    gs_old = int(math.sqrt(len(posemb_grid)))
-
-    posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
-    posemb_grid = F.interpolate(posemb_grid, size=(gs_h, gs_w), mode="bilinear")
-    posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_h * gs_w, -1)
-
-    posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
-
-    return posemb
-
-
-def forward_flex(self, x):
-    b, c, h, w = x.shape
-
-    pos_embed = self._resize_pos_embed(
-        self.pos_embed, h // self.patch_size[1], w // self.patch_size[0]
-    )
-
-    B = x.shape[0]
-
-    if hasattr(self.patch_embed, "backbone"):
-        x = self.patch_embed.backbone(x)
-        if isinstance(x, (list, tuple)):
-            x = x[-1]  # last feature if backbone outputs list/tuple of features
-
-    x = self.patch_embed.proj(x).flatten(2).transpose(1, 2)
-
-    if getattr(self, "dist_token", None) is not None:
-        cls_tokens = self.cls_token.expand(
-            B, -1, -1
-        )  # stole cls_tokens impl from Phil Wang, thanks
-        dist_token = self.dist_token.expand(B, -1, -1)
-        x = torch.cat((cls_tokens, dist_token, x), dim=1)
-    else:
-        cls_tokens = self.cls_token.expand(
-            B, -1, -1
-        )  # stole cls_tokens impl from Phil Wang, thanks
-        x = torch.cat((cls_tokens, x), dim=1)
-
-    x = x + pos_embed
-    x = self.pos_drop(x)
-
-    for blk in self.blocks:
-        x = blk(x)
-
-    x = self.norm(x)
-
-    return x
-
-
-activations = {}
-
-
-def get_activation(name):
-    def hook(model, input, output):
-        activations[name] = output
-
-    return hook
-
-
-def get_readout_oper(vit_features, features, use_readout, start_index=1):
-    if use_readout == "ignore":
-        readout_oper = [Slice(start_index)] * len(features)
-    elif use_readout == "add":
-        readout_oper = [AddReadout(start_index)] * len(features)
-    elif use_readout == "project":
-        readout_oper = [
-            ProjectReadout(vit_features, start_index) for out_feat in features
-        ]
-    else:
-        assert (
-            False
-        ), "wrong operation for readout token, use_readout can be 'ignore', 'add', or 'project'"
-
-    return readout_oper
-
-
-def _make_vit_b16_backbone(
-    model,
-    features=[96, 192, 384, 768],
-    size=[384, 384],
-    hooks=[2, 5, 8, 11],
-    vit_features=768,
-    use_readout="ignore",
-    start_index=1,
-):
-    pretrained = nn.Module()
-
-    pretrained.model = model
-    pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
-    pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
-    pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
-    pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
-
-    pretrained.activations = activations
-
-    readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
-
-    # 32, 48, 136, 384
-    pretrained.act_postprocess1 = nn.Sequential(
-        readout_oper[0],
-        Transpose(1, 2),
-        nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
-        nn.Conv2d(
-            in_channels=vit_features,
-            out_channels=features[0],
-            kernel_size=1,
-            stride=1,
-            padding=0,
-        ),
-        nn.ConvTranspose2d(
-            in_channels=features[0],
-            out_channels=features[0],
-            kernel_size=4,
-            stride=4,
-            padding=0,
-            bias=True,
-            dilation=1,
-            groups=1,
-        ),
-    )
-
-    pretrained.act_postprocess2 = nn.Sequential(
-        readout_oper[1],
-        Transpose(1, 2),
-        nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
-        nn.Conv2d(
-            in_channels=vit_features,
-            out_channels=features[1],
-            kernel_size=1,
-            stride=1,
-            padding=0,
-        ),
-        nn.ConvTranspose2d(
-            in_channels=features[1],
-            out_channels=features[1],
-            kernel_size=2,
-            stride=2,
-            padding=0,
-            bias=True,
-            dilation=1,
-            groups=1,
-        ),
-    )
-
-    pretrained.act_postprocess3 = nn.Sequential(
-        readout_oper[2],
-        Transpose(1, 2),
-        nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
-        nn.Conv2d(
-            in_channels=vit_features,
-            out_channels=features[2],
-            kernel_size=1,
-            stride=1,
-            padding=0,
-        ),
-    )
-
-    pretrained.act_postprocess4 = nn.Sequential(
-        readout_oper[3],
-        Transpose(1, 2),
-        nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
-        nn.Conv2d(
-            in_channels=vit_features,
-            out_channels=features[3],
-            kernel_size=1,
-            stride=1,
-            padding=0,
-        ),
-        nn.Conv2d(
-            in_channels=features[3],
-            out_channels=features[3],
-            kernel_size=3,
-            stride=2,
-            padding=1,
-        ),
-    )
-
-    pretrained.model.start_index = start_index
-    pretrained.model.patch_size = [16, 16]
-
-    # We inject this function into the VisionTransformer instances so that
-    # we can use it with interpolated position embeddings without modifying the library source.
-    pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
-    pretrained.model._resize_pos_embed = types.MethodType(
-        _resize_pos_embed, pretrained.model
-    )
-
-    return pretrained
-
-
-def _make_pretrained_vitl16_384(pretrained, use_readout="ignore", hooks=None):
-    model = timm.create_model("vit_large_patch16_384", pretrained=pretrained)
-
-    hooks = [5, 11, 17, 23] if hooks == None else hooks
-    return _make_vit_b16_backbone(
-        model,
-        features=[256, 512, 1024, 1024],
-        hooks=hooks,
-        vit_features=1024,
-        use_readout=use_readout,
-    )
-
-
-def _make_pretrained_vitb16_384(pretrained, use_readout="ignore", hooks=None):
-    model = timm.create_model("vit_base_patch16_384", pretrained=pretrained)
-
-    hooks = [2, 5, 8, 11] if hooks == None else hooks
-    return _make_vit_b16_backbone(
-        model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout
-    )
-
-
-def _make_pretrained_deitb16_384(pretrained, use_readout="ignore", hooks=None):
-    model = timm.create_model("vit_deit_base_patch16_384", pretrained=pretrained)
-
-    hooks = [2, 5, 8, 11] if hooks == None else hooks
-    return _make_vit_b16_backbone(
-        model, features=[96, 192, 384, 768], hooks=hooks, use_readout=use_readout
-    )
-
-
-def _make_pretrained_deitb16_distil_384(pretrained, use_readout="ignore", hooks=None):
-    model = timm.create_model(
-        "vit_deit_base_distilled_patch16_384", pretrained=pretrained
-    )
-
-    hooks = [2, 5, 8, 11] if hooks == None else hooks
-    return _make_vit_b16_backbone(
-        model,
-        features=[96, 192, 384, 768],
-        hooks=hooks,
-        use_readout=use_readout,
-        start_index=2,
-    )
-
-
-def _make_vit_b_rn50_backbone(
-    model,
-    features=[256, 512, 768, 768],
-    size=[384, 384],
-    hooks=[0, 1, 8, 11],
-    vit_features=768,
-    use_vit_only=False,
-    use_readout="ignore",
-    start_index=1,
-):
-    pretrained = nn.Module()
-
-    pretrained.model = model
-
-    if use_vit_only == True:
-        pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
-        pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
-    else:
-        pretrained.model.patch_embed.backbone.stages[0].register_forward_hook(
-            get_activation("1")
-        )
-        pretrained.model.patch_embed.backbone.stages[1].register_forward_hook(
-            get_activation("2")
-        )
-
-    pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
-    pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
-
-    pretrained.activations = activations
-
-    readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
-
-    if use_vit_only == True:
-        pretrained.act_postprocess1 = nn.Sequential(
-            readout_oper[0],
-            Transpose(1, 2),
-            nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
-            nn.Conv2d(
-                in_channels=vit_features,
-                out_channels=features[0],
-                kernel_size=1,
-                stride=1,
-                padding=0,
-            ),
-            nn.ConvTranspose2d(
-                in_channels=features[0],
-                out_channels=features[0],
-                kernel_size=4,
-                stride=4,
-                padding=0,
-                bias=True,
-                dilation=1,
-                groups=1,
-            ),
-        )
-
-        pretrained.act_postprocess2 = nn.Sequential(
-            readout_oper[1],
-            Transpose(1, 2),
-            nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
-            nn.Conv2d(
-                in_channels=vit_features,
-                out_channels=features[1],
-                kernel_size=1,
-                stride=1,
-                padding=0,
-            ),
-            nn.ConvTranspose2d(
-                in_channels=features[1],
-                out_channels=features[1],
-                kernel_size=2,
-                stride=2,
-                padding=0,
-                bias=True,
-                dilation=1,
-                groups=1,
-            ),
-        )
-    else:
-        pretrained.act_postprocess1 = nn.Sequential(
-            nn.Identity(), nn.Identity(), nn.Identity()
-        )
-        pretrained.act_postprocess2 = nn.Sequential(
-            nn.Identity(), nn.Identity(), nn.Identity()
-        )
-
-    pretrained.act_postprocess3 = nn.Sequential(
-        readout_oper[2],
-        Transpose(1, 2),
-        nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
-        nn.Conv2d(
-            in_channels=vit_features,
-            out_channels=features[2],
-            kernel_size=1,
-            stride=1,
-            padding=0,
-        ),
-    )
-
-    pretrained.act_postprocess4 = nn.Sequential(
-        readout_oper[3],
-        Transpose(1, 2),
-        nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
-        nn.Conv2d(
-            in_channels=vit_features,
-            out_channels=features[3],
-            kernel_size=1,
-            stride=1,
-            padding=0,
-        ),
-        nn.Conv2d(
-            in_channels=features[3],
-            out_channels=features[3],
-            kernel_size=3,
-            stride=2,
-            padding=1,
-        ),
-    )
-
-    pretrained.model.start_index = start_index
-    pretrained.model.patch_size = [16, 16]
-
-    # We inject this function into the VisionTransformer instances so that
-    # we can use it with interpolated position embeddings without modifying the library source.
-    pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
-
-    # We inject this function into the VisionTransformer instances so that
-    # we can use it with interpolated position embeddings without modifying the library source.
-    pretrained.model._resize_pos_embed = types.MethodType(
-        _resize_pos_embed, pretrained.model
-    )
-
-    return pretrained
-
-
-def _make_pretrained_vitb_rn50_384(
-    pretrained, use_readout="ignore", hooks=None, use_vit_only=False
-):
-    model = timm.create_model("vit_base_resnet50_384", pretrained=pretrained)
-
-    hooks = [0, 1, 8, 11] if hooks == None else hooks
-    return _make_vit_b_rn50_backbone(
-        model,
-        features=[256, 512, 768, 768],
-        size=[384, 384],
-        hooks=hooks,
-        use_vit_only=use_vit_only,
-        use_readout=use_readout,
-    )
diff --git a/ldm/modules/midas/utils.py b/ldm/modules/midas/utils.py
deleted file mode 100644
index 9a9d3b5b66370fa98da9e067ba53ead848ea9a59..0000000000000000000000000000000000000000
--- a/ldm/modules/midas/utils.py
+++ /dev/null
@@ -1,189 +0,0 @@
-"""Utils for monoDepth."""
-import sys
-import re
-import numpy as np
-import cv2
-import torch
-
-
-def read_pfm(path):
-    """Read pfm file.
-
-    Args:
-        path (str): path to file
-
-    Returns:
-        tuple: (data, scale)
-    """
-    with open(path, "rb") as file:
-
-        color = None
-        width = None
-        height = None
-        scale = None
-        endian = None
-
-        header = file.readline().rstrip()
-        if header.decode("ascii") == "PF":
-            color = True
-        elif header.decode("ascii") == "Pf":
-            color = False
-        else:
-            raise Exception("Not a PFM file: " + path)
-
-        dim_match = re.match(r"^(\d+)\s(\d+)\s$", file.readline().decode("ascii"))
-        if dim_match:
-            width, height = list(map(int, dim_match.groups()))
-        else:
-            raise Exception("Malformed PFM header.")
-
-        scale = float(file.readline().decode("ascii").rstrip())
-        if scale < 0:
-            # little-endian
-            endian = "<"
-            scale = -scale
-        else:
-            # big-endian
-            endian = ">"
-
-        data = np.fromfile(file, endian + "f")
-        shape = (height, width, 3) if color else (height, width)
-
-        data = np.reshape(data, shape)
-        data = np.flipud(data)
-
-        return data, scale
-
-
-def write_pfm(path, image, scale=1):
-    """Write pfm file.
-
-    Args:
-        path (str): pathto file
-        image (array): data
-        scale (int, optional): Scale. Defaults to 1.
-    """
-
-    with open(path, "wb") as file:
-        color = None
-
-        if image.dtype.name != "float32":
-            raise Exception("Image dtype must be float32.")
-
-        image = np.flipud(image)
-
-        if len(image.shape) == 3 and image.shape[2] == 3:  # color image
-            color = True
-        elif (
-            len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1
-        ):  # greyscale
-            color = False
-        else:
-            raise Exception("Image must have H x W x 3, H x W x 1 or H x W dimensions.")
-
-        file.write("PF\n" if color else "Pf\n".encode())
-        file.write("%d %d\n".encode() % (image.shape[1], image.shape[0]))
-
-        endian = image.dtype.byteorder
-
-        if endian == "<" or endian == "=" and sys.byteorder == "little":
-            scale = -scale
-
-        file.write("%f\n".encode() % scale)
-
-        image.tofile(file)
-
-
-def read_image(path):
-    """Read image and output RGB image (0-1).
-
-    Args:
-        path (str): path to file
-
-    Returns:
-        array: RGB image (0-1)
-    """
-    img = cv2.imread(path)
-
-    if img.ndim == 2:
-        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
-
-    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) / 255.0
-
-    return img
-
-
-def resize_image(img):
-    """Resize image and make it fit for network.
-
-    Args:
-        img (array): image
-
-    Returns:
-        tensor: data ready for network
-    """
-    height_orig = img.shape[0]
-    width_orig = img.shape[1]
-
-    if width_orig > height_orig:
-        scale = width_orig / 384
-    else:
-        scale = height_orig / 384
-
-    height = (np.ceil(height_orig / scale / 32) * 32).astype(int)
-    width = (np.ceil(width_orig / scale / 32) * 32).astype(int)
-
-    img_resized = cv2.resize(img, (width, height), interpolation=cv2.INTER_AREA)
-
-    img_resized = (
-        torch.from_numpy(np.transpose(img_resized, (2, 0, 1))).contiguous().float()
-    )
-    img_resized = img_resized.unsqueeze(0)
-
-    return img_resized
-
-
-def resize_depth(depth, width, height):
-    """Resize depth map and bring to CPU (numpy).
-
-    Args:
-        depth (tensor): depth
-        width (int): image width
-        height (int): image height
-
-    Returns:
-        array: processed depth
-    """
-    depth = torch.squeeze(depth[0, :, :, :]).to("cpu")
-
-    depth_resized = cv2.resize(
-        depth.numpy(), (width, height), interpolation=cv2.INTER_CUBIC
-    )
-
-    return depth_resized
-
-def write_depth(path, depth, bits=1):
-    """Write depth map to pfm and png file.
-
-    Args:
-        path (str): filepath without extension
-        depth (array): depth
-    """
-    write_pfm(path + ".pfm", depth.astype(np.float32))
-
-    depth_min = depth.min()
-    depth_max = depth.max()
-
-    max_val = (2**(8*bits))-1
-
-    if depth_max - depth_min > np.finfo("float").eps:
-        out = max_val * (depth - depth_min) / (depth_max - depth_min)
-    else:
-        out = np.zeros(depth.shape, dtype=depth.type)
-
-    if bits == 1:
-        cv2.imwrite(path + ".png", out.astype("uint8"))
-    elif bits == 2:
-        cv2.imwrite(path + ".png", out.astype("uint16"))
-
-    return
diff --git a/ldm/util.py b/ldm/util.py
deleted file mode 100644
index 8c09ca1c72f7ceb3f9d7f9546aae5561baf62b13..0000000000000000000000000000000000000000
--- a/ldm/util.py
+++ /dev/null
@@ -1,197 +0,0 @@
-import importlib
-
-import torch
-from torch import optim
-import numpy as np
-
-from inspect import isfunction
-from PIL import Image, ImageDraw, ImageFont
-
-
-def log_txt_as_img(wh, xc, size=10):
-    # wh a tuple of (width, height)
-    # xc a list of captions to plot
-    b = len(xc)
-    txts = list()
-    for bi in range(b):
-        txt = Image.new("RGB", wh, color="white")
-        draw = ImageDraw.Draw(txt)
-        font = ImageFont.truetype('data/DejaVuSans.ttf', size=size)
-        nc = int(40 * (wh[0] / 256))
-        lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc))
-
-        try:
-            draw.text((0, 0), lines, fill="black", font=font)
-        except UnicodeEncodeError:
-            print("Cant encode string for logging. Skipping.")
-
-        txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
-        txts.append(txt)
-    txts = np.stack(txts)
-    txts = torch.tensor(txts)
-    return txts
-
-
-def ismap(x):
-    if not isinstance(x, torch.Tensor):
-        return False
-    return (len(x.shape) == 4) and (x.shape[1] > 3)
-
-
-def isimage(x):
-    if not isinstance(x,torch.Tensor):
-        return False
-    return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
-
-
-def exists(x):
-    return x is not None
-
-
-def default(val, d):
-    if exists(val):
-        return val
-    return d() if isfunction(d) else d
-
-
-def mean_flat(tensor):
-    """
-    https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86
-    Take the mean over all non-batch dimensions.
-    """
-    return tensor.mean(dim=list(range(1, len(tensor.shape))))
-
-
-def count_params(model, verbose=False):
-    total_params = sum(p.numel() for p in model.parameters())
-    if verbose:
-        print(f"{model.__class__.__name__} has {total_params*1.e-6:.2f} M params.")
-    return total_params
-
-
-def instantiate_from_config(config):
-    if not "target" in config:
-        if config == '__is_first_stage__':
-            return None
-        elif config == "__is_unconditional__":
-            return None
-        raise KeyError("Expected key `target` to instantiate.")
-    return get_obj_from_str(config["target"])(**config.get("params", dict()))
-
-
-def get_obj_from_str(string, reload=False):
-    module, cls = string.rsplit(".", 1)
-    if reload:
-        module_imp = importlib.import_module(module)
-        importlib.reload(module_imp)
-    return getattr(importlib.import_module(module, package=None), cls)
-
-
-class AdamWwithEMAandWings(optim.Optimizer):
-    # credit to https://gist.github.com/crowsonkb/65f7265353f403714fce3b2595e0b298
-    def __init__(self, params, lr=1.e-3, betas=(0.9, 0.999), eps=1.e-8,  # TODO: check hyperparameters before using
-                 weight_decay=1.e-2, amsgrad=False, ema_decay=0.9999,   # ema decay to match previous code
-                 ema_power=1., param_names=()):
-        """AdamW that saves EMA versions of the parameters."""
-        if not 0.0 <= lr:
-            raise ValueError("Invalid learning rate: {}".format(lr))
-        if not 0.0 <= eps:
-            raise ValueError("Invalid epsilon value: {}".format(eps))
-        if not 0.0 <= betas[0] < 1.0:
-            raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
-        if not 0.0 <= betas[1] < 1.0:
-            raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
-        if not 0.0 <= weight_decay:
-            raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
-        if not 0.0 <= ema_decay <= 1.0:
-            raise ValueError("Invalid ema_decay value: {}".format(ema_decay))
-        defaults = dict(lr=lr, betas=betas, eps=eps,
-                        weight_decay=weight_decay, amsgrad=amsgrad, ema_decay=ema_decay,
-                        ema_power=ema_power, param_names=param_names)
-        super().__init__(params, defaults)
-
-    def __setstate__(self, state):
-        super().__setstate__(state)
-        for group in self.param_groups:
-            group.setdefault('amsgrad', False)
-
-    @torch.no_grad()
-    def step(self, closure=None):
-        """Performs a single optimization step.
-        Args:
-            closure (callable, optional): A closure that reevaluates the model
-                and returns the loss.
-        """
-        loss = None
-        if closure is not None:
-            with torch.enable_grad():
-                loss = closure()
-
-        for group in self.param_groups:
-            params_with_grad = []
-            grads = []
-            exp_avgs = []
-            exp_avg_sqs = []
-            ema_params_with_grad = []
-            state_sums = []
-            max_exp_avg_sqs = []
-            state_steps = []
-            amsgrad = group['amsgrad']
-            beta1, beta2 = group['betas']
-            ema_decay = group['ema_decay']
-            ema_power = group['ema_power']
-
-            for p in group['params']:
-                if p.grad is None:
-                    continue
-                params_with_grad.append(p)
-                if p.grad.is_sparse:
-                    raise RuntimeError('AdamW does not support sparse gradients')
-                grads.append(p.grad)
-
-                state = self.state[p]
-
-                # State initialization
-                if len(state) == 0:
-                    state['step'] = 0
-                    # Exponential moving average of gradient values
-                    state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
-                    # Exponential moving average of squared gradient values
-                    state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
-                    if amsgrad:
-                        # Maintains max of all exp. moving avg. of sq. grad. values
-                        state['max_exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
-                    # Exponential moving average of parameter values
-                    state['param_exp_avg'] = p.detach().float().clone()
-
-                exp_avgs.append(state['exp_avg'])
-                exp_avg_sqs.append(state['exp_avg_sq'])
-                ema_params_with_grad.append(state['param_exp_avg'])
-
-                if amsgrad:
-                    max_exp_avg_sqs.append(state['max_exp_avg_sq'])
-
-                # update the steps for each param group update
-                state['step'] += 1
-                # record the step after step update
-                state_steps.append(state['step'])
-
-            optim._functional.adamw(params_with_grad,
-                    grads,
-                    exp_avgs,
-                    exp_avg_sqs,
-                    max_exp_avg_sqs,
-                    state_steps,
-                    amsgrad=amsgrad,
-                    beta1=beta1,
-                    beta2=beta2,
-                    lr=group['lr'],
-                    weight_decay=group['weight_decay'],
-                    eps=group['eps'],
-                    maximize=False)
-
-            cur_ema_decay = min(ema_decay, 1 - state['step'] ** -ema_power)
-            for param, ema_param in zip(params_with_grad, ema_params_with_grad):
-                ema_param.mul_(cur_ema_decay).add_(param.float(), alpha=1 - cur_ema_decay)
-
-        return loss
\ No newline at end of file
diff --git a/requirements.txt b/requirements.txt
index 280f6e63a48487b0900c6800afdf7f938f46f447..b1174e7c4bf2398ea54fcaa5e685e485f4657b01 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -1,19 +1,10 @@
 --extra-index-url https://download.pytorch.org/whl/cu113
 torch==1.13.0
 torchvision
-albumentations==0.4.3
-opencv-python
-pudb==2019.2
-imageio==2.9.0
-imageio-ffmpeg==0.4.2
-pytorch-lightning==1.4.2
-torchmetrics==0.6
-omegaconf==2.1.1
-test-tube>=0.7.5
-einops==0.3.0
-transformers==4.19.2
-webdataset==0.2.5
-open_clip_torch==2.7.0
+git+https://github.com/huggingface/diffusers.git@30f6f44
+transformers
+accelerate
+ftfy
 python-dotenv
 invisible-watermark
 https://github.com/apolinario/xformers/releases/download/0.0.3/xformers-0.0.14.dev0-cp38-cp38-linux_x86_64.whl
\ No newline at end of file
diff --git a/scripts/img2img.py b/scripts/img2img.py
deleted file mode 100644
index 9085ba9d37ea6402b9ee543e82f7d8c56a1c273a..0000000000000000000000000000000000000000
--- a/scripts/img2img.py
+++ /dev/null
@@ -1,279 +0,0 @@
-"""make variations of input image"""
-
-import argparse, os
-import PIL
-import torch
-import numpy as np
-from omegaconf import OmegaConf
-from PIL import Image
-from tqdm import tqdm, trange
-from itertools import islice
-from einops import rearrange, repeat
-from torchvision.utils import make_grid
-from torch import autocast
-from contextlib import nullcontext
-from pytorch_lightning import seed_everything
-from imwatermark import WatermarkEncoder
-
-
-from scripts.txt2img import put_watermark
-from ldm.util import instantiate_from_config
-from ldm.models.diffusion.ddim import DDIMSampler
-
-
-def chunk(it, size):
-    it = iter(it)
-    return iter(lambda: tuple(islice(it, size)), ())
-
-
-def load_model_from_config(config, ckpt, verbose=False):
-    print(f"Loading model from {ckpt}")
-    pl_sd = torch.load(ckpt, map_location="cpu")
-    if "global_step" in pl_sd:
-        print(f"Global Step: {pl_sd['global_step']}")
-    sd = pl_sd["state_dict"]
-    model = instantiate_from_config(config.model)
-    m, u = model.load_state_dict(sd, strict=False)
-    if len(m) > 0 and verbose:
-        print("missing keys:")
-        print(m)
-    if len(u) > 0 and verbose:
-        print("unexpected keys:")
-        print(u)
-
-    model.cuda()
-    model.eval()
-    return model
-
-
-def load_img(path):
-    image = Image.open(path).convert("RGB")
-    w, h = image.size
-    print(f"loaded input image of size ({w}, {h}) from {path}")
-    w, h = map(lambda x: x - x % 64, (w, h))  # resize to integer multiple of 64
-    image = image.resize((w, h), resample=PIL.Image.LANCZOS)
-    image = np.array(image).astype(np.float32) / 255.0
-    image = image[None].transpose(0, 3, 1, 2)
-    image = torch.from_numpy(image)
-    return 2. * image - 1.
-
-
-def main():
-    parser = argparse.ArgumentParser()
-
-    parser.add_argument(
-        "--prompt",
-        type=str,
-        nargs="?",
-        default="a painting of a virus monster playing guitar",
-        help="the prompt to render"
-    )
-
-    parser.add_argument(
-        "--init-img",
-        type=str,
-        nargs="?",
-        help="path to the input image"
-    )
-
-    parser.add_argument(
-        "--outdir",
-        type=str,
-        nargs="?",
-        help="dir to write results to",
-        default="outputs/img2img-samples"
-    )
-
-    parser.add_argument(
-        "--ddim_steps",
-        type=int,
-        default=50,
-        help="number of ddim sampling steps",
-    )
-
-    parser.add_argument(
-        "--fixed_code",
-        action='store_true',
-        help="if enabled, uses the same starting code across all samples ",
-    )
-
-    parser.add_argument(
-        "--ddim_eta",
-        type=float,
-        default=0.0,
-        help="ddim eta (eta=0.0 corresponds to deterministic sampling",
-    )
-    parser.add_argument(
-        "--n_iter",
-        type=int,
-        default=1,
-        help="sample this often",
-    )
-
-    parser.add_argument(
-        "--C",
-        type=int,
-        default=4,
-        help="latent channels",
-    )
-    parser.add_argument(
-        "--f",
-        type=int,
-        default=8,
-        help="downsampling factor, most often 8 or 16",
-    )
-
-    parser.add_argument(
-        "--n_samples",
-        type=int,
-        default=2,
-        help="how many samples to produce for each given prompt. A.k.a batch size",
-    )
-
-    parser.add_argument(
-        "--n_rows",
-        type=int,
-        default=0,
-        help="rows in the grid (default: n_samples)",
-    )
-
-    parser.add_argument(
-        "--scale",
-        type=float,
-        default=9.0,
-        help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
-    )
-
-    parser.add_argument(
-        "--strength",
-        type=float,
-        default=0.8,
-        help="strength for noising/unnoising. 1.0 corresponds to full destruction of information in init image",
-    )
-
-    parser.add_argument(
-        "--from-file",
-        type=str,
-        help="if specified, load prompts from this file",
-    )
-    parser.add_argument(
-        "--config",
-        type=str,
-        default="configs/stable-diffusion/v2-inference.yaml",
-        help="path to config which constructs model",
-    )
-    parser.add_argument(
-        "--ckpt",
-        type=str,
-        help="path to checkpoint of model",
-    )
-    parser.add_argument(
-        "--seed",
-        type=int,
-        default=42,
-        help="the seed (for reproducible sampling)",
-    )
-    parser.add_argument(
-        "--precision",
-        type=str,
-        help="evaluate at this precision",
-        choices=["full", "autocast"],
-        default="autocast"
-    )
-
-    opt = parser.parse_args()
-    seed_everything(opt.seed)
-
-    config = OmegaConf.load(f"{opt.config}")
-    model = load_model_from_config(config, f"{opt.ckpt}")
-
-    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
-    model = model.to(device)
-
-    sampler = DDIMSampler(model)
-
-    os.makedirs(opt.outdir, exist_ok=True)
-    outpath = opt.outdir
-
-    print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...")
-    wm = "SDV2"
-    wm_encoder = WatermarkEncoder()
-    wm_encoder.set_watermark('bytes', wm.encode('utf-8'))
-
-    batch_size = opt.n_samples
-    n_rows = opt.n_rows if opt.n_rows > 0 else batch_size
-    if not opt.from_file:
-        prompt = opt.prompt
-        assert prompt is not None
-        data = [batch_size * [prompt]]
-
-    else:
-        print(f"reading prompts from {opt.from_file}")
-        with open(opt.from_file, "r") as f:
-            data = f.read().splitlines()
-            data = list(chunk(data, batch_size))
-
-    sample_path = os.path.join(outpath, "samples")
-    os.makedirs(sample_path, exist_ok=True)
-    base_count = len(os.listdir(sample_path))
-    grid_count = len(os.listdir(outpath)) - 1
-
-    assert os.path.isfile(opt.init_img)
-    init_image = load_img(opt.init_img).to(device)
-    init_image = repeat(init_image, '1 ... -> b ...', b=batch_size)
-    init_latent = model.get_first_stage_encoding(model.encode_first_stage(init_image))  # move to latent space
-
-    sampler.make_schedule(ddim_num_steps=opt.ddim_steps, ddim_eta=opt.ddim_eta, verbose=False)
-
-    assert 0. <= opt.strength <= 1., 'can only work with strength in [0.0, 1.0]'
-    t_enc = int(opt.strength * opt.ddim_steps)
-    print(f"target t_enc is {t_enc} steps")
-
-    precision_scope = autocast if opt.precision == "autocast" else nullcontext
-    with torch.no_grad():
-        with precision_scope("cuda"):
-            with model.ema_scope():
-                all_samples = list()
-                for n in trange(opt.n_iter, desc="Sampling"):
-                    for prompts in tqdm(data, desc="data"):
-                        uc = None
-                        if opt.scale != 1.0:
-                            uc = model.get_learned_conditioning(batch_size * [""])
-                        if isinstance(prompts, tuple):
-                            prompts = list(prompts)
-                        c = model.get_learned_conditioning(prompts)
-
-                        # encode (scaled latent)
-                        z_enc = sampler.stochastic_encode(init_latent, torch.tensor([t_enc] * batch_size).to(device))
-                        # decode it
-                        samples = sampler.decode(z_enc, c, t_enc, unconditional_guidance_scale=opt.scale,
-                                                 unconditional_conditioning=uc, )
-
-                        x_samples = model.decode_first_stage(samples)
-                        x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)
-
-                        for x_sample in x_samples:
-                            x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
-                            img = Image.fromarray(x_sample.astype(np.uint8))
-                            img = put_watermark(img, wm_encoder)
-                            img.save(os.path.join(sample_path, f"{base_count:05}.png"))
-                            base_count += 1
-                        all_samples.append(x_samples)
-
-                # additionally, save as grid
-                grid = torch.stack(all_samples, 0)
-                grid = rearrange(grid, 'n b c h w -> (n b) c h w')
-                grid = make_grid(grid, nrow=n_rows)
-
-                # to image
-                grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
-                grid = Image.fromarray(grid.astype(np.uint8))
-                grid = put_watermark(grid, wm_encoder)
-                grid.save(os.path.join(outpath, f'grid-{grid_count:04}.png'))
-                grid_count += 1
-
-    print(f"Your samples are ready and waiting for you here: \n{outpath} \nEnjoy.")
-
-
-if __name__ == "__main__":
-    main()
diff --git a/scripts/streamlit/depth2img.py b/scripts/streamlit/depth2img.py
deleted file mode 100644
index ef6614e1a803eb477e09acda641118d3a9b81c24..0000000000000000000000000000000000000000
--- a/scripts/streamlit/depth2img.py
+++ /dev/null
@@ -1,158 +0,0 @@
-import sys
-import torch
-import numpy as np
-import streamlit as st
-from PIL import Image
-from omegaconf import OmegaConf
-from einops import repeat, rearrange
-from pytorch_lightning import seed_everything
-from imwatermark import WatermarkEncoder
-
-from scripts.txt2img import put_watermark
-from ldm.util import instantiate_from_config
-from ldm.models.diffusion.ddim import DDIMSampler
-from ldm.data.util import AddMiDaS
-
-torch.set_grad_enabled(False)
-
-
-@st.cache(allow_output_mutation=True)
-def initialize_model(config, ckpt):
-    config = OmegaConf.load(config)
-    model = instantiate_from_config(config.model)
-    model.load_state_dict(torch.load(ckpt)["state_dict"], strict=False)
-
-    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
-    model = model.to(device)
-    sampler = DDIMSampler(model)
-    return sampler
-
-
-def make_batch_sd(
-        image,
-        txt,
-        device,
-        num_samples=1,
-        model_type="dpt_hybrid"
-):
-    image = np.array(image.convert("RGB"))
-    image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
-    # sample['jpg'] is tensor hwc in [-1, 1] at this point
-    midas_trafo = AddMiDaS(model_type=model_type)
-    batch = {
-        "jpg": image,
-        "txt": num_samples * [txt],
-    }
-    batch = midas_trafo(batch)
-    batch["jpg"] = rearrange(batch["jpg"], 'h w c -> 1 c h w')
-    batch["jpg"] = repeat(batch["jpg"].to(device=device), "1 ... -> n ...", n=num_samples)
-    batch["midas_in"] = repeat(torch.from_numpy(batch["midas_in"][None, ...]).to(device=device), "1 ... -> n ...", n=num_samples)
-    return batch
-
-
-def paint(sampler, image, prompt, t_enc, seed, scale, num_samples=1, callback=None,
-          do_full_sample=False):
-    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
-    model = sampler.model
-    seed_everything(seed)
-
-    print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...")
-    wm = "SDV2"
-    wm_encoder = WatermarkEncoder()
-    wm_encoder.set_watermark('bytes', wm.encode('utf-8'))
-
-    with torch.no_grad(),\
-            torch.autocast("cuda"):
-        batch = make_batch_sd(image, txt=prompt, device=device, num_samples=num_samples)
-        z = model.get_first_stage_encoding(model.encode_first_stage(batch[model.first_stage_key]))  # move to latent space
-        c = model.cond_stage_model.encode(batch["txt"])
-        c_cat = list()
-        for ck in model.concat_keys:
-            cc = batch[ck]
-            cc = model.depth_model(cc)
-            depth_min, depth_max = torch.amin(cc, dim=[1, 2, 3], keepdim=True), torch.amax(cc, dim=[1, 2, 3],
-                                                                                           keepdim=True)
-            display_depth = (cc - depth_min) / (depth_max - depth_min)
-            st.image(Image.fromarray((display_depth[0, 0, ...].cpu().numpy() * 255.).astype(np.uint8)))
-            cc = torch.nn.functional.interpolate(
-                cc,
-                size=z.shape[2:],
-                mode="bicubic",
-                align_corners=False,
-            )
-            depth_min, depth_max = torch.amin(cc, dim=[1, 2, 3], keepdim=True), torch.amax(cc, dim=[1, 2, 3],
-                                                                                           keepdim=True)
-            cc = 2. * (cc - depth_min) / (depth_max - depth_min) - 1.
-            c_cat.append(cc)
-        c_cat = torch.cat(c_cat, dim=1)
-        # cond
-        cond = {"c_concat": [c_cat], "c_crossattn": [c]}
-
-        # uncond cond
-        uc_cross = model.get_unconditional_conditioning(num_samples, "")
-        uc_full = {"c_concat": [c_cat], "c_crossattn": [uc_cross]}
-        if not do_full_sample:
-            # encode (scaled latent)
-            z_enc = sampler.stochastic_encode(z, torch.tensor([t_enc] * num_samples).to(model.device))
-        else:
-            z_enc = torch.randn_like(z)
-        # decode it
-        samples = sampler.decode(z_enc, cond, t_enc, unconditional_guidance_scale=scale,
-                                 unconditional_conditioning=uc_full, callback=callback)
-        x_samples_ddim = model.decode_first_stage(samples)
-        result = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
-        result = result.cpu().numpy().transpose(0, 2, 3, 1) * 255
-    return [put_watermark(Image.fromarray(img.astype(np.uint8)), wm_encoder) for img in result]
-
-
-def run():
-    st.title("Stable Diffusion Depth2Img")
-    # run via streamlit run scripts/demo/depth2img.py 
 
-    sampler = initialize_model(sys.argv[1], sys.argv[2])
-
-    image = st.file_uploader("Image", ["jpg", "png"])
-    if image:
-        image = Image.open(image)
-        w, h = image.size
-        st.text(f"loaded input image of size ({w}, {h})")
-        width, height = map(lambda x: x - x % 64, (w, h))  # resize to integer multiple of 64
-        image = image.resize((width, height))
-        st.text(f"resized input image to size ({width}, {height} (w, h))")
-        st.image(image)
-
-        prompt = st.text_input("Prompt")
-
-        seed = st.number_input("Seed", min_value=0, max_value=1000000, value=0)
-        num_samples = st.number_input("Number of Samples", min_value=1, max_value=64, value=1)
-        scale = st.slider("Scale", min_value=0.1, max_value=30.0, value=9.0, step=0.1)
-        steps = st.slider("DDIM Steps", min_value=0, max_value=50, value=50, step=1)
-        strength = st.slider("Strength", min_value=0., max_value=1., value=0.9)
-        eta = st.sidebar.number_input("eta (DDIM)", value=0., min_value=0., max_value=1.)
-
-        t_progress = st.progress(0)
-        def t_callback(t):
-            t_progress.progress(min((t + 1) / t_enc, 1.))
-
-        assert 0. <= strength <= 1., 'can only work with strength in [0.0, 1.0]'
-        do_full_sample = strength == 1.
-        t_enc = min(int(strength * steps), steps-1)
-        sampler.make_schedule(steps, ddim_eta=eta, verbose=True)
-        if st.button("Sample"):
-            result = paint(
-                sampler=sampler,
-                image=image,
-                prompt=prompt,
-                t_enc=t_enc,
-                seed=seed,
-                scale=scale,
-                num_samples=num_samples,
-                callback=t_callback,
-                do_full_sample=do_full_sample
-            )
-            st.write("Result")
-            for image in result:
-                st.image(image, output_format='PNG')
-
-
-if __name__ == "__main__":
-    run()
diff --git a/scripts/streamlit/inpainting.py b/scripts/streamlit/inpainting.py
deleted file mode 100644
index f13e609668997a99fc304d1e5832eb9d39539e98..0000000000000000000000000000000000000000
--- a/scripts/streamlit/inpainting.py
+++ /dev/null
@@ -1,194 +0,0 @@
-import sys
-import cv2
-import torch
-import numpy as np
-import streamlit as st
-from PIL import Image
-from omegaconf import OmegaConf
-from einops import repeat
-from streamlit_drawable_canvas import st_canvas
-from imwatermark import WatermarkEncoder
-
-from ldm.models.diffusion.ddim import DDIMSampler
-from ldm.util import instantiate_from_config
-
-
-torch.set_grad_enabled(False)
-
-
-def put_watermark(img, wm_encoder=None):
-    if wm_encoder is not None:
-        img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
-        img = wm_encoder.encode(img, 'dwtDct')
-        img = Image.fromarray(img[:, :, ::-1])
-    return img
-
-
-@st.cache(allow_output_mutation=True)
-def initialize_model(config, ckpt):
-    config = OmegaConf.load(config)
-    model = instantiate_from_config(config.model)
-
-    model.load_state_dict(torch.load(ckpt)["state_dict"], strict=False)
-
-    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
-    model = model.to(device)
-    sampler = DDIMSampler(model)
-
-    return sampler
-
-
-def make_batch_sd(
-        image,
-        mask,
-        txt,
-        device,
-        num_samples=1):
-    image = np.array(image.convert("RGB"))
-    image = image[None].transpose(0, 3, 1, 2)
-    image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
-
-    mask = np.array(mask.convert("L"))
-    mask = mask.astype(np.float32) / 255.0
-    mask = mask[None, None]
-    mask[mask < 0.5] = 0
-    mask[mask >= 0.5] = 1
-    mask = torch.from_numpy(mask)
-
-    masked_image = image * (mask < 0.5)
-
-    batch = {
-        "image": repeat(image.to(device=device), "1 ... -> n ...", n=num_samples),
-        "txt": num_samples * [txt],
-        "mask": repeat(mask.to(device=device), "1 ... -> n ...", n=num_samples),
-        "masked_image": repeat(masked_image.to(device=device), "1 ... -> n ...", n=num_samples),
-    }
-    return batch
-
-
-def inpaint(sampler, image, mask, prompt, seed, scale, ddim_steps, num_samples=1, w=512, h=512):
-    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
-    model = sampler.model
-
-    print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...")
-    wm = "SDV2"
-    wm_encoder = WatermarkEncoder()
-    wm_encoder.set_watermark('bytes', wm.encode('utf-8'))
-
-    prng = np.random.RandomState(seed)
-    start_code = prng.randn(num_samples, 4, h // 8, w // 8)
-    start_code = torch.from_numpy(start_code).to(device=device, dtype=torch.float32)
-
-    with torch.no_grad(), \
-            torch.autocast("cuda"):
-            batch = make_batch_sd(image, mask, txt=prompt, device=device, num_samples=num_samples)
-
-            c = model.cond_stage_model.encode(batch["txt"])
-
-            c_cat = list()
-            for ck in model.concat_keys:
-                cc = batch[ck].float()
-                if ck != model.masked_image_key:
-                    bchw = [num_samples, 4, h // 8, w // 8]
-                    cc = torch.nn.functional.interpolate(cc, size=bchw[-2:])
-                else:
-                    cc = model.get_first_stage_encoding(model.encode_first_stage(cc))
-                c_cat.append(cc)
-            c_cat = torch.cat(c_cat, dim=1)
-
-            # cond
-            cond = {"c_concat": [c_cat], "c_crossattn": [c]}
-
-            # uncond cond
-            uc_cross = model.get_unconditional_conditioning(num_samples, "")
-            uc_full = {"c_concat": [c_cat], "c_crossattn": [uc_cross]}
-
-            shape = [model.channels, h // 8, w // 8]
-            samples_cfg, intermediates = sampler.sample(
-                ddim_steps,
-                num_samples,
-                shape,
-                cond,
-                verbose=False,
-                eta=1.0,
-                unconditional_guidance_scale=scale,
-                unconditional_conditioning=uc_full,
-                x_T=start_code,
-            )
-            x_samples_ddim = model.decode_first_stage(samples_cfg)
-
-            result = torch.clamp((x_samples_ddim + 1.0) / 2.0,
-                                 min=0.0, max=1.0)
-
-            result = result.cpu().numpy().transpose(0, 2, 3, 1) * 255
-    return [put_watermark(Image.fromarray(img.astype(np.uint8)), wm_encoder) for img in result]
-
-
-def run():
-    st.title("Stable Diffusion Inpainting")
-
-    sampler = initialize_model(sys.argv[1], sys.argv[2])
-
-    image = st.file_uploader("Image", ["jpg", "png"])
-    if image:
-        image = Image.open(image)
-        w, h = image.size
-        print(f"loaded input image of size ({w}, {h})")
-        width, height = map(lambda x: x - x % 64, (w, h))  # resize to integer multiple of 32
-        image = image.resize((width, height))
-
-        prompt = st.text_input("Prompt")
-
-        seed = st.number_input("Seed", min_value=0, max_value=1000000, value=0)
-        num_samples = st.number_input("Number of Samples", min_value=1, max_value=64, value=1)
-        scale = st.slider("Scale", min_value=0.1, max_value=30.0, value=10., step=0.1)
-        ddim_steps = st.slider("DDIM Steps", min_value=0, max_value=50, value=50, step=1)
-
-        fill_color = "rgba(255, 255, 255, 0.0)"
-        stroke_width = st.number_input("Brush Size",
-                                       value=64,
-                                       min_value=1,
-                                       max_value=100)
-        stroke_color = "rgba(255, 255, 255, 1.0)"
-        bg_color = "rgba(0, 0, 0, 1.0)"
-        drawing_mode = "freedraw"
-
-        st.write("Canvas")
-        st.caption(
-            "Draw a mask to inpaint, then click the 'Send to Streamlit' button (bottom left, with an arrow on it).")
-        canvas_result = st_canvas(
-            fill_color=fill_color,
-            stroke_width=stroke_width,
-            stroke_color=stroke_color,
-            background_color=bg_color,
-            background_image=image,
-            update_streamlit=False,
-            height=height,
-            width=width,
-            drawing_mode=drawing_mode,
-            key="canvas",
-        )
-        if canvas_result:
-            mask = canvas_result.image_data
-            mask = mask[:, :, -1] > 0
-            if mask.sum() > 0:
-                mask = Image.fromarray(mask)
-
-                result = inpaint(
-                    sampler=sampler,
-                    image=image,
-                    mask=mask,
-                    prompt=prompt,
-                    seed=seed,
-                    scale=scale,
-                    ddim_steps=ddim_steps,
-                    num_samples=num_samples,
-                    h=height, w=width
-                )
-                st.write("Inpainted")
-                for image in result:
-                    st.image(image, output_format='PNG')
-
-
-if __name__ == "__main__":
-    run()
\ No newline at end of file
diff --git a/scripts/streamlit/superresolution.py b/scripts/streamlit/superresolution.py
deleted file mode 100644
index c9803f7547f199ae59c20d7bd18636de31dce3de..0000000000000000000000000000000000000000
--- a/scripts/streamlit/superresolution.py
+++ /dev/null
@@ -1,169 +0,0 @@
-import sys
-import torch
-import numpy as np
-import streamlit as st
-from PIL import Image
-from omegaconf import OmegaConf
-from einops import repeat, rearrange
-from pytorch_lightning import seed_everything
-from imwatermark import WatermarkEncoder
-
-from scripts.txt2img import put_watermark
-from ldm.models.diffusion.ddim import DDIMSampler
-from ldm.models.diffusion.ddpm import LatentUpscaleDiffusion, LatentUpscaleFinetuneDiffusion
-from ldm.util import exists, instantiate_from_config
-
-
-torch.set_grad_enabled(False)
-
-
-@st.cache(allow_output_mutation=True)
-def initialize_model(config, ckpt):
-    config = OmegaConf.load(config)
-    model = instantiate_from_config(config.model)
-    model.load_state_dict(torch.load(ckpt)["state_dict"], strict=False)
-
-    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
-    model = model.to(device)
-    sampler = DDIMSampler(model)
-    return sampler
-
-
-def make_batch_sd(
-        image,
-        txt,
-        device,
-        num_samples=1,
-):
-    image = np.array(image.convert("RGB"))
-    image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
-    batch = {
-        "lr": rearrange(image, 'h w c -> 1 c h w'),
-        "txt": num_samples * [txt],
-    }
-    batch["lr"] = repeat(batch["lr"].to(device=device), "1 ... -> n ...", n=num_samples)
-    return batch
-
-
-def make_noise_augmentation(model, batch, noise_level=None):
-    x_low = batch[model.low_scale_key]
-    x_low = x_low.to(memory_format=torch.contiguous_format).float()
-    x_aug, noise_level = model.low_scale_model(x_low, noise_level)
-    return x_aug, noise_level
-
-
-def paint(sampler, image, prompt, seed, scale, h, w, steps, num_samples=1, callback=None, eta=0., noise_level=None):
-    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
-    model = sampler.model
-    seed_everything(seed)
-    prng = np.random.RandomState(seed)
-    start_code = prng.randn(num_samples, model.channels, h , w)
-    start_code = torch.from_numpy(start_code).to(device=device, dtype=torch.float32)
-
-    print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...")
-    wm = "SDV2"
-    wm_encoder = WatermarkEncoder()
-    wm_encoder.set_watermark('bytes', wm.encode('utf-8'))
-    with torch.no_grad(),\
-            torch.autocast("cuda"):
-        batch = make_batch_sd(image, txt=prompt, device=device, num_samples=num_samples)
-        c = model.cond_stage_model.encode(batch["txt"])
-        c_cat = list()
-        if isinstance(model, LatentUpscaleFinetuneDiffusion):
-            for ck in model.concat_keys:
-                cc = batch[ck]
-                if exists(model.reshuffle_patch_size):
-                    assert isinstance(model.reshuffle_patch_size, int)
-                    cc = rearrange(cc, 'b c (p1 h) (p2 w) -> b (p1 p2 c) h w',
-                                   p1=model.reshuffle_patch_size, p2=model.reshuffle_patch_size)
-                c_cat.append(cc)
-            c_cat = torch.cat(c_cat, dim=1)
-            # cond
-            cond = {"c_concat": [c_cat], "c_crossattn": [c]}
-            # uncond cond
-            uc_cross = model.get_unconditional_conditioning(num_samples, "")
-            uc_full = {"c_concat": [c_cat], "c_crossattn": [uc_cross]}
-        elif isinstance(model, LatentUpscaleDiffusion):
-            x_augment, noise_level = make_noise_augmentation(model, batch, noise_level)
-            cond = {"c_concat": [x_augment], "c_crossattn": [c], "c_adm": noise_level}
-            # uncond cond
-            uc_cross = model.get_unconditional_conditioning(num_samples, "")
-            uc_full = {"c_concat": [x_augment], "c_crossattn": [uc_cross], "c_adm": noise_level}
-        else:
-            raise NotImplementedError()
-
-        shape = [model.channels, h, w]
-        samples, intermediates = sampler.sample(
-            steps,
-            num_samples,
-            shape,
-            cond,
-            verbose=False,
-            eta=eta,
-            unconditional_guidance_scale=scale,
-            unconditional_conditioning=uc_full,
-            x_T=start_code,
-            callback=callback
-        )
-    with torch.no_grad():
-        x_samples_ddim = model.decode_first_stage(samples)
-    result = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
-    result = result.cpu().numpy().transpose(0, 2, 3, 1) * 255
-    st.text(f"upscaled image shape: {result.shape}")
-    return [put_watermark(Image.fromarray(img.astype(np.uint8)), wm_encoder) for img in result]
-
-
-def run():
-    st.title("Stable Diffusion Upscaling")
-    # run via streamlit run scripts/demo/depth2img.py  
-    sampler = initialize_model(sys.argv[1], sys.argv[2])
-
-    image = st.file_uploader("Image", ["jpg", "png"])
-    if image:
-        image = Image.open(image)
-        w, h = image.size
-        st.text(f"loaded input image of size ({w}, {h})")
-        width, height = map(lambda x: x - x % 64, (w, h))  # resize to integer multiple of 64
-        image = image.resize((width, height))
-        st.text(f"resized input image to size ({width}, {height} (w, h))")
-        st.image(image)
-
-        st.write(f"\n Tip: Add a description of the object that should be upscaled, e.g.: 'a professional photograph of a cat'")
-        prompt = st.text_input("Prompt", "a high quality professional photograph")
-
-        seed = st.number_input("Seed", min_value=0, max_value=1000000, value=0)
-        num_samples = st.number_input("Number of Samples", min_value=1, max_value=64, value=1)
-        scale = st.slider("Scale", min_value=0.1, max_value=30.0, value=9.0, step=0.1)
-        steps = st.slider("DDIM Steps", min_value=2, max_value=200, value=75, step=1)
-        eta = st.sidebar.number_input("eta (DDIM)", value=0., min_value=0., max_value=1.)
-
-        noise_level = None
-        if isinstance(sampler.model, LatentUpscaleDiffusion):
-            # TODO: make this work for all models
-            noise_level = st.sidebar.number_input("Noise Augmentation", min_value=0, max_value=350, value=20)
-            noise_level = torch.Tensor(num_samples * [noise_level]).to(sampler.model.device).long()
-
-        t_progress = st.progress(0)
-        def t_callback(t):
-            t_progress.progress(min((t + 1) / steps, 1.))
-
-        sampler.make_schedule(steps, ddim_eta=eta, verbose=True)
-        if st.button("Sample"):
-            result = paint(
-                sampler=sampler,
-                image=image,
-                prompt=prompt,
-                seed=seed,
-                scale=scale,
-                h=height, w=width, steps=steps,
-                num_samples=num_samples,
-                callback=t_callback,
-                noise_level=noise_level
-            )
-            st.write("Result")
-            for image in result:
-                st.image(image, output_format='PNG')
-
-
-if __name__ == "__main__":
-    run()
diff --git a/scripts/tests/test_watermark.py b/scripts/tests/test_watermark.py
deleted file mode 100644
index f93f8a6e70763c0e284157bc8225827520b2f5ef..0000000000000000000000000000000000000000
--- a/scripts/tests/test_watermark.py
+++ /dev/null
@@ -1,18 +0,0 @@
-import cv2
-import fire
-from imwatermark import WatermarkDecoder
-
-
-def testit(img_path):
-    bgr = cv2.imread(img_path)
-    decoder = WatermarkDecoder('bytes', 136)
-    watermark = decoder.decode(bgr, 'dwtDct')
-    try:
-        dec = watermark.decode('utf-8')
-    except:
-        dec = "null"
-    print(dec)
-
-
-if __name__ == "__main__":
-    fire.Fire(testit)
\ No newline at end of file
diff --git a/scripts/txt2img.py b/scripts/txt2img.py
deleted file mode 100644
index 1ed42a3cd87347998e947362e8845f28bf580fdd..0000000000000000000000000000000000000000
--- a/scripts/txt2img.py
+++ /dev/null
@@ -1,289 +0,0 @@
-import argparse, os
-import cv2
-import torch
-import numpy as np
-from omegaconf import OmegaConf
-from PIL import Image
-from tqdm import tqdm, trange
-from itertools import islice
-from einops import rearrange
-from torchvision.utils import make_grid
-from pytorch_lightning import seed_everything
-from torch import autocast
-from contextlib import nullcontext
-from imwatermark import WatermarkEncoder
-
-from ldm.util import instantiate_from_config
-from ldm.models.diffusion.ddim import DDIMSampler
-from ldm.models.diffusion.plms import PLMSSampler
-from ldm.models.diffusion.dpm_solver import DPMSolverSampler
-
-torch.set_grad_enabled(False)
-
-def chunk(it, size):
-    it = iter(it)
-    return iter(lambda: tuple(islice(it, size)), ())
-
-
-def load_model_from_config(config, ckpt, verbose=False):
-    print(f"Loading model from {ckpt}")
-    pl_sd = torch.load(ckpt, map_location="cpu")
-    if "global_step" in pl_sd:
-        print(f"Global Step: {pl_sd['global_step']}")
-    sd = pl_sd["state_dict"]
-    model = instantiate_from_config(config.model)
-    m, u = model.load_state_dict(sd, strict=False)
-    if len(m) > 0 and verbose:
-        print("missing keys:")
-        print(m)
-    if len(u) > 0 and verbose:
-        print("unexpected keys:")
-        print(u)
-
-    model.cuda()
-    model.eval()
-    return model
-
-
-def parse_args():
-    parser = argparse.ArgumentParser()
-    parser.add_argument(
-        "--prompt",
-        type=str,
-        nargs="?",
-        default="a professional photograph of an astronaut riding a triceratops",
-        help="the prompt to render"
-    )
-    parser.add_argument(
-        "--outdir",
-        type=str,
-        nargs="?",
-        help="dir to write results to",
-        default="outputs/txt2img-samples"
-    )
-    parser.add_argument(
-        "--steps",
-        type=int,
-        default=50,
-        help="number of ddim sampling steps",
-    )
-    parser.add_argument(
-        "--plms",
-        action='store_true',
-        help="use plms sampling",
-    )
-    parser.add_argument(
-        "--dpm",
-        action='store_true',
-        help="use DPM (2) sampler",
-    )
-    parser.add_argument(
-        "--fixed_code",
-        action='store_true',
-        help="if enabled, uses the same starting code across all samples ",
-    )
-    parser.add_argument(
-        "--ddim_eta",
-        type=float,
-        default=0.0,
-        help="ddim eta (eta=0.0 corresponds to deterministic sampling",
-    )
-    parser.add_argument(
-        "--n_iter",
-        type=int,
-        default=3,
-        help="sample this often",
-    )
-    parser.add_argument(
-        "--H",
-        type=int,
-        default=512,
-        help="image height, in pixel space",
-    )
-    parser.add_argument(
-        "--W",
-        type=int,
-        default=512,
-        help="image width, in pixel space",
-    )
-    parser.add_argument(
-        "--C",
-        type=int,
-        default=4,
-        help="latent channels",
-    )
-    parser.add_argument(
-        "--f",
-        type=int,
-        default=8,
-        help="downsampling factor, most often 8 or 16",
-    )
-    parser.add_argument(
-        "--n_samples",
-        type=int,
-        default=3,
-        help="how many samples to produce for each given prompt. A.k.a batch size",
-    )
-    parser.add_argument(
-        "--n_rows",
-        type=int,
-        default=0,
-        help="rows in the grid (default: n_samples)",
-    )
-    parser.add_argument(
-        "--scale",
-        type=float,
-        default=9.0,
-        help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
-    )
-    parser.add_argument(
-        "--from-file",
-        type=str,
-        help="if specified, load prompts from this file, separated by newlines",
-    )
-    parser.add_argument(
-        "--config",
-        type=str,
-        default="configs/stable-diffusion/v2-inference.yaml",
-        help="path to config which constructs model",
-    )
-    parser.add_argument(
-        "--ckpt",
-        type=str,
-        help="path to checkpoint of model",
-    )
-    parser.add_argument(
-        "--seed",
-        type=int,
-        default=42,
-        help="the seed (for reproducible sampling)",
-    )
-    parser.add_argument(
-        "--precision",
-        type=str,
-        help="evaluate at this precision",
-        choices=["full", "autocast"],
-        default="autocast"
-    )
-    parser.add_argument(
-        "--repeat",
-        type=int,
-        default=1,
-        help="repeat each prompt in file this often",
-    )
-    opt = parser.parse_args()
-    return opt
-
-
-def put_watermark(img, wm_encoder=None):
-    if wm_encoder is not None:
-        img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
-        img = wm_encoder.encode(img, 'dwtDct')
-        img = Image.fromarray(img[:, :, ::-1])
-    return img
-
-
-def main(opt):
-    seed_everything(opt.seed)
-
-    config = OmegaConf.load(f"{opt.config}")
-    model = load_model_from_config(config, f"{opt.ckpt}")
-
-    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
-    model = model.to(device)
-
-    if opt.plms:
-        sampler = PLMSSampler(model)
-    elif opt.dpm:
-        sampler = DPMSolverSampler(model)
-    else:
-        sampler = DDIMSampler(model)
-
-    os.makedirs(opt.outdir, exist_ok=True)
-    outpath = opt.outdir
-
-    print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...")
-    wm = "SDV2"
-    wm_encoder = WatermarkEncoder()
-    wm_encoder.set_watermark('bytes', wm.encode('utf-8'))
-
-    batch_size = opt.n_samples
-    n_rows = opt.n_rows if opt.n_rows > 0 else batch_size
-    if not opt.from_file:
-        prompt = opt.prompt
-        assert prompt is not None
-        data = [batch_size * [prompt]]
-
-    else:
-        print(f"reading prompts from {opt.from_file}")
-        with open(opt.from_file, "r") as f:
-            data = f.read().splitlines()
-            data = [p for p in data for i in range(opt.repeat)]
-            data = list(chunk(data, batch_size))
-
-    sample_path = os.path.join(outpath, "samples")
-    os.makedirs(sample_path, exist_ok=True)
-    sample_count = 0
-    base_count = len(os.listdir(sample_path))
-    grid_count = len(os.listdir(outpath)) - 1
-
-    start_code = None
-    if opt.fixed_code:
-        start_code = torch.randn([opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f], device=device)
-
-    precision_scope = autocast if opt.precision == "autocast" else nullcontext
-    with torch.no_grad(), \
-        precision_scope("cuda"), \
-        model.ema_scope():
-            all_samples = list()
-            for n in trange(opt.n_iter, desc="Sampling"):
-                for prompts in tqdm(data, desc="data"):
-                    uc = None
-                    if opt.scale != 1.0:
-                        uc = model.get_learned_conditioning(batch_size * [""])
-                    if isinstance(prompts, tuple):
-                        prompts = list(prompts)
-                    c = model.get_learned_conditioning(prompts)
-                    shape = [opt.C, opt.H // opt.f, opt.W // opt.f]
-                    samples, _ = sampler.sample(S=opt.steps,
-                                                     conditioning=c,
-                                                     batch_size=opt.n_samples,
-                                                     shape=shape,
-                                                     verbose=False,
-                                                     unconditional_guidance_scale=opt.scale,
-                                                     unconditional_conditioning=uc,
-                                                     eta=opt.ddim_eta,
-                                                     x_T=start_code)
-
-                    x_samples = model.decode_first_stage(samples)
-                    x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)
-
-                    for x_sample in x_samples:
-                        x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
-                        img = Image.fromarray(x_sample.astype(np.uint8))
-                        img = put_watermark(img, wm_encoder)
-                        img.save(os.path.join(sample_path, f"{base_count:05}.png"))
-                        base_count += 1
-                        sample_count += 1
-
-                    all_samples.append(x_samples)
-
-            # additionally, save as grid
-            grid = torch.stack(all_samples, 0)
-            grid = rearrange(grid, 'n b c h w -> (n b) c h w')
-            grid = make_grid(grid, nrow=n_rows)
-
-            # to image
-            grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
-            grid = Image.fromarray(grid.astype(np.uint8))
-            grid = put_watermark(grid, wm_encoder)
-            grid.save(os.path.join(outpath, f'grid-{grid_count:04}.png'))
-            grid_count += 1
-
-    print(f"Your samples are ready and waiting for you here: \n{outpath} \n"
-          f" \nEnjoy.")
-
-
-if __name__ == "__main__":
-    opt = parse_args()
-    main(opt)
diff --git a/setup.py b/setup.py
deleted file mode 100644
index 00f5b4d874f0f19ece54fac2dd50b39774b86c5b..0000000000000000000000000000000000000000
--- a/setup.py
+++ /dev/null
@@ -1,13 +0,0 @@
-from setuptools import setup, find_packages
-
-setup(
-    name='stable-diffusion',
-    version='0.0.1',
-    description='',
-    packages=find_packages(),
-    install_requires=[
-        'torch',
-        'numpy',
-        'tqdm',
-    ],
-)
\ No newline at end of file