Spaces:
Runtime error
Runtime error
| import os | |
| import random | |
| import sys | |
| import torch | |
| import torch.nn.functional as F | |
| import torch.utils.data | |
| from TTS.tts.models.xtts import load_audio | |
| torch.set_num_threads(1) | |
| def key_samples_by_col(samples, col): | |
| """Returns a dictionary of samples keyed by language.""" | |
| samples_by_col = {} | |
| for sample in samples: | |
| col_val = sample[col] | |
| assert isinstance(col_val, str) | |
| if col_val not in samples_by_col: | |
| samples_by_col[col_val] = [] | |
| samples_by_col[col_val].append(sample) | |
| return samples_by_col | |
| def get_prompt_slice(gt_path, max_sample_length, min_sample_length, sample_rate, is_eval=False): | |
| rel_clip = load_audio(gt_path, sample_rate) | |
| # if eval uses a middle size sample when it is possible to be more reproducible | |
| if is_eval: | |
| sample_length = int((min_sample_length + max_sample_length) / 2) | |
| else: | |
| sample_length = random.randint(min_sample_length, max_sample_length) | |
| gap = rel_clip.shape[-1] - sample_length | |
| if gap < 0: | |
| sample_length = rel_clip.shape[-1] // 2 | |
| gap = rel_clip.shape[-1] - sample_length | |
| # if eval start always from the position 0 to be more reproducible | |
| if is_eval: | |
| rand_start = 0 | |
| else: | |
| rand_start = random.randint(0, gap) | |
| rand_end = rand_start + sample_length | |
| rel_clip = rel_clip[:, rand_start:rand_end] | |
| rel_clip = F.pad(rel_clip, pad=(0, max_sample_length - rel_clip.shape[-1])) | |
| cond_idxs = [rand_start, rand_end] | |
| return rel_clip, rel_clip.shape[-1], cond_idxs | |
| class XTTSDataset(torch.utils.data.Dataset): | |
| def __init__(self, config, samples, tokenizer, sample_rate, is_eval=False): | |
| self.config = config | |
| model_args = config.model_args | |
| self.failed_samples = set() | |
| self.debug_failures = model_args.debug_loading_failures | |
| self.max_conditioning_length = model_args.max_conditioning_length | |
| self.min_conditioning_length = model_args.min_conditioning_length | |
| self.is_eval = is_eval | |
| self.tokenizer = tokenizer | |
| self.sample_rate = sample_rate | |
| self.max_wav_len = model_args.max_wav_length | |
| self.max_text_len = model_args.max_text_length | |
| self.use_masking_gt_prompt_approach = model_args.gpt_use_masking_gt_prompt_approach | |
| assert self.max_wav_len is not None and self.max_text_len is not None | |
| self.samples = samples | |
| if not is_eval: | |
| random.seed(config.training_seed) | |
| # random.shuffle(self.samples) | |
| random.shuffle(self.samples) | |
| # order by language | |
| self.samples = key_samples_by_col(self.samples, "language") | |
| print(" > Sampling by language:", self.samples.keys()) | |
| else: | |
| # for evaluation load and check samples that are corrupted to ensures the reproducibility | |
| self.check_eval_samples() | |
| def check_eval_samples(self): | |
| print(" > Filtering invalid eval samples!!") | |
| new_samples = [] | |
| for sample in self.samples: | |
| try: | |
| tseq, _, wav, _, _, _ = self.load_item(sample) | |
| except: | |
| continue | |
| # Basically, this audio file is nonexistent or too long to be supported by the dataset. | |
| if ( | |
| wav is None | |
| or (self.max_wav_len is not None and wav.shape[-1] > self.max_wav_len) | |
| or (self.max_text_len is not None and tseq.shape[0] > self.max_text_len) | |
| ): | |
| continue | |
| new_samples.append(sample) | |
| self.samples = new_samples | |
| print(" > Total eval samples after filtering:", len(self.samples)) | |
| def get_text(self, text, lang): | |
| tokens = self.tokenizer.encode(text, lang) | |
| tokens = torch.IntTensor(tokens) | |
| assert not torch.any(tokens == 1), f"UNK token found in {text} -> {self.tokenizer.decode(tokens)}" | |
| # The stop token should always be sacred. | |
| assert not torch.any(tokens == 0), f"Stop token found in {text}" | |
| return tokens | |
| def load_item(self, sample): | |
| text = str(sample["text"]) | |
| tseq = self.get_text(text, sample["language"]) | |
| audiopath = sample["audio_file"] | |
| wav = load_audio(audiopath, self.sample_rate) | |
| if text is None or len(text.strip()) == 0: | |
| raise ValueError | |
| if wav is None or wav.shape[-1] < (0.5 * self.sample_rate): | |
| # Ultra short clips are also useless (and can cause problems within some models). | |
| raise ValueError | |
| if self.use_masking_gt_prompt_approach: | |
| # get a slice from GT to condition the model | |
| cond, _, cond_idxs = get_prompt_slice( | |
| audiopath, self.max_conditioning_length, self.min_conditioning_length, self.sample_rate, self.is_eval | |
| ) | |
| # if use masking do not use cond_len | |
| cond_len = torch.nan | |
| else: | |
| ref_sample = ( | |
| sample["reference_path"] | |
| if "reference_path" in sample and sample["reference_path"] is not None | |
| else audiopath | |
| ) | |
| cond, cond_len, _ = get_prompt_slice( | |
| ref_sample, self.max_conditioning_length, self.min_conditioning_length, self.sample_rate, self.is_eval | |
| ) | |
| # if do not use masking use cond_len | |
| cond_idxs = torch.nan | |
| return tseq, audiopath, wav, cond, cond_len, cond_idxs | |
| def __getitem__(self, index): | |
| if self.is_eval: | |
| sample = self.samples[index] | |
| sample_id = str(index) | |
| else: | |
| # select a random language | |
| lang = random.choice(list(self.samples.keys())) | |
| # select random sample | |
| index = random.randint(0, len(self.samples[lang]) - 1) | |
| sample = self.samples[lang][index] | |
| # a unique id for each sampel to deal with fails | |
| sample_id = lang + "_" + str(index) | |
| # ignore samples that we already know that is not valid ones | |
| if sample_id in self.failed_samples: | |
| if self.debug_failures: | |
| print(f"Ignoring sample {sample['audio_file']} because it was already ignored before !!") | |
| # call get item again to get other sample | |
| return self[1] | |
| # try to load the sample, if fails added it to the failed samples list | |
| try: | |
| tseq, audiopath, wav, cond, cond_len, cond_idxs = self.load_item(sample) | |
| except: | |
| if self.debug_failures: | |
| print(f"error loading {sample['audio_file']} {sys.exc_info()}") | |
| self.failed_samples.add(sample_id) | |
| return self[1] | |
| # check if the audio and text size limits and if it out of the limits, added it failed_samples | |
| if ( | |
| wav is None | |
| or (self.max_wav_len is not None and wav.shape[-1] > self.max_wav_len) | |
| or (self.max_text_len is not None and tseq.shape[0] > self.max_text_len) | |
| ): | |
| # Basically, this audio file is nonexistent or too long to be supported by the dataset. | |
| # It's hard to handle this situation properly. Best bet is to return the a random valid token and skew the dataset somewhat as a result. | |
| if self.debug_failures and wav is not None and tseq is not None: | |
| print( | |
| f"error loading {sample['audio_file']}: ranges are out of bounds; {wav.shape[-1]}, {tseq.shape[0]}" | |
| ) | |
| self.failed_samples.add(sample_id) | |
| return self[1] | |
| res = { | |
| # 'real_text': text, | |
| "text": tseq, | |
| "text_lengths": torch.tensor(tseq.shape[0], dtype=torch.long), | |
| "wav": wav, | |
| "wav_lengths": torch.tensor(wav.shape[-1], dtype=torch.long), | |
| "filenames": audiopath, | |
| "conditioning": cond.unsqueeze(1), | |
| "cond_lens": torch.tensor(cond_len, dtype=torch.long) | |
| if cond_len is not torch.nan | |
| else torch.tensor([cond_len]), | |
| "cond_idxs": torch.tensor(cond_idxs) if cond_idxs is not torch.nan else torch.tensor([cond_idxs]), | |
| } | |
| return res | |
| def __len__(self): | |
| if self.is_eval: | |
| return len(self.samples) | |
| return sum([len(v) for v in self.samples.values()]) | |
| def collate_fn(self, batch): | |
| # convert list of dicts to dict of lists | |
| B = len(batch) | |
| batch = {k: [dic[k] for dic in batch] for k in batch[0]} | |
| # stack for features that already have the same shape | |
| batch["wav_lengths"] = torch.stack(batch["wav_lengths"]) | |
| batch["text_lengths"] = torch.stack(batch["text_lengths"]) | |
| batch["conditioning"] = torch.stack(batch["conditioning"]) | |
| batch["cond_lens"] = torch.stack(batch["cond_lens"]) | |
| batch["cond_idxs"] = torch.stack(batch["cond_idxs"]) | |
| if torch.any(batch["cond_idxs"].isnan()): | |
| batch["cond_idxs"] = None | |
| if torch.any(batch["cond_lens"].isnan()): | |
| batch["cond_lens"] = None | |
| max_text_len = batch["text_lengths"].max() | |
| max_wav_len = batch["wav_lengths"].max() | |
| # create padding tensors | |
| text_padded = torch.IntTensor(B, max_text_len) | |
| wav_padded = torch.FloatTensor(B, 1, max_wav_len) | |
| # initialize tensors for zero padding | |
| text_padded = text_padded.zero_() | |
| wav_padded = wav_padded.zero_() | |
| for i in range(B): | |
| text = batch["text"][i] | |
| text_padded[i, : batch["text_lengths"][i]] = torch.IntTensor(text) | |
| wav = batch["wav"][i] | |
| wav_padded[i, :, : batch["wav_lengths"][i]] = torch.FloatTensor(wav) | |
| batch["wav"] = wav_padded | |
| batch["padded_text"] = text_padded | |
| return batch | |