Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -62,7 +62,13 @@ def inference(image, min_score, model_name):
|
|
| 62 |
models[model_id]["cfg"].MODEL.ROI_HEADS.SCORE_THRESH_TEST = min_score
|
| 63 |
predictor = DefaultPredictor(models[model_id]["cfg"])
|
| 64 |
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
# Convert image from BGR to RGB if necessary
|
| 67 |
im = img[:,:,::-1]
|
| 68 |
|
|
@@ -71,13 +77,13 @@ def inference(image, min_score, model_name):
|
|
| 71 |
|
| 72 |
v = Visualizer(im, models[model_id]["metadata"], scale=1.2)
|
| 73 |
out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
|
| 74 |
-
|
| 75 |
# Convert the result from BGR to RGB
|
| 76 |
result_image = out.get_image()
|
| 77 |
result_image_rgb = result_image[:, :, ::-1] # Convert BGR to RGB
|
| 78 |
|
| 79 |
results.append(result_image_rgb) # Add the processed image to the list
|
| 80 |
-
|
| 81 |
return results # Return all the results
|
| 82 |
|
| 83 |
title = "# DBMDZ Detectron2 Model Demo"
|
|
@@ -100,7 +106,7 @@ with gr.Blocks() as demo:
|
|
| 100 |
|
| 101 |
model_name = gr.Radio(choices=[model["name"] for model in models], value=models[0]["name"], label="Select Detectron2 model")
|
| 102 |
|
| 103 |
-
output_gallery = gr.Gallery(label="Output Images", elem_id="output_images")
|
| 104 |
|
| 105 |
inference_button = gr.Button("Submit")
|
| 106 |
|
|
|
|
| 62 |
models[model_id]["cfg"].MODEL.ROI_HEADS.SCORE_THRESH_TEST = min_score
|
| 63 |
predictor = DefaultPredictor(models[model_id]["cfg"])
|
| 64 |
|
| 65 |
+
# Asegurémonos de que image es una lista de imágenes o solo una
|
| 66 |
+
if isinstance(image, list): # Si es una lista de imágenes
|
| 67 |
+
images = image
|
| 68 |
+
else: # Si es solo una imagen, la convertimos en una lista
|
| 69 |
+
images = [image]
|
| 70 |
+
|
| 71 |
+
for img in images:
|
| 72 |
# Convert image from BGR to RGB if necessary
|
| 73 |
im = img[:,:,::-1]
|
| 74 |
|
|
|
|
| 77 |
|
| 78 |
v = Visualizer(im, models[model_id]["metadata"], scale=1.2)
|
| 79 |
out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
|
| 80 |
+
|
| 81 |
# Convert the result from BGR to RGB
|
| 82 |
result_image = out.get_image()
|
| 83 |
result_image_rgb = result_image[:, :, ::-1] # Convert BGR to RGB
|
| 84 |
|
| 85 |
results.append(result_image_rgb) # Add the processed image to the list
|
| 86 |
+
|
| 87 |
return results # Return all the results
|
| 88 |
|
| 89 |
title = "# DBMDZ Detectron2 Model Demo"
|
|
|
|
| 106 |
|
| 107 |
model_name = gr.Radio(choices=[model["name"] for model in models], value=models[0]["name"], label="Select Detectron2 model")
|
| 108 |
|
| 109 |
+
output_gallery = gr.Gallery(type ="numpy", label="Output Images", elem_id="output_images")
|
| 110 |
|
| 111 |
inference_button = gr.Button("Submit")
|
| 112 |
|