File size: 25,513 Bytes
6852edb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
781d823
6852edb
 
 
 
 
 
 
 
781d823
6852edb
 
 
5bdad28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6852edb
 
8a0d894
6852edb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0dc7005
 
 
 
6852edb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d94f450
6852edb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
066d2f4
 
0b420f3
066d2f4
 
 
 
 
 
 
 
 
 
 
 
 
e32c725
066d2f4
 
e32c725
066d2f4
6852edb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
781d823
6852edb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29b1042
6852edb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29b1042
6852edb
 
 
 
 
 
f002e54
6852edb
 
 
 
 
13aed20
 
 
 
 
 
 
6852edb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f21ec03
6852edb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
781d823
 
 
346d505
781d823
 
 
 
6852edb
 
 
 
 
 
 
 
 
 
13aed20
 
 
 
 
 
 
 
 
6852edb
17ea1d8
6852edb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0dc7005
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
781d823
 
 
 
 
 
6852edb
 
 
 
 
 
0dc7005
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6852edb
 
0dc7005
 
6852edb
 
0dc7005
 
6852edb
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
import gradio as gr
import os
import argparse
import torch
import logging
import threading
from datetime import datetime
import torchaudio
import librosa
import soundfile as sf

# ZeroGPU support
try:
    import spaces
    ZEROGPU_AVAILABLE = True
except ImportError:
    ZEROGPU_AVAILABLE = False
    # Create a dummy decorator for non-ZeroGPU environments
    class spaces:
        @staticmethod
        def GPU(duration=10):
            def decorator(func):
                return func
            return decorator

# Project imports
from tokenizer import StepAudioTokenizer
from tts import StepAudioTTS
from model_loader import ModelSource
from config.edit_config import get_supported_edit_types
from whisper_wrapper import WhisperWrapper

# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# Global variables for ZeroGPU-optimized loading
encoder = None
common_tts_engine = None
whisper_asr = None
args_global = None
_model_lock = threading.Lock()  # Thread lock for model initialization


def initialize_whisper():
    global whisper_asr
    if whisper_asr is not None:
        return
    with _model_lock:
        if whisper_asr is not None:
            return
        try:
            whisper_asr = WhisperWrapper()
            logger.info("βœ“ WhisperWrapper initialized for ASR")
        except Exception as e:
            logger.error(f"❌ Error loading Whisper ASR model: {e}")
            raise
              
    

def initialize_models():
    """Initialize models on first GPU call (ZeroGPU optimization: load inside GPU context)"""
    global encoder, common_tts_engine, args_global

    # Fast path: check if already initialized (without lock)
    if common_tts_engine is not None:
        return  # Already initialized

    # Slow path: acquire lock and double-check
    with _model_lock:
        # Double-check pattern: another thread might have initialized while waiting for lock
        if common_tts_engine is not None:
            return  # Already initialized by another thread

        if args_global is None:
            raise RuntimeError("Global args not set. Cannot initialize models.")

        try:
            logger.info("πŸš€ Initializing models inside GPU context (first call)...")

            # Determine model source
            source_mapping = {
                "auto": ModelSource.AUTO,
                "local": ModelSource.LOCAL,
                "modelscope": ModelSource.MODELSCOPE,
                "huggingface": ModelSource.HUGGINGFACE
            }
            model_source = source_mapping[args_global.model_source]

            # Load StepAudioTokenizer (avoid CUDA initialization in main process)
            encoder = StepAudioTokenizer(
                os.path.join(args_global.model_path, "Step-Audio-Tokenizer"),
                model_source=model_source,
                funasr_model_id=args_global.tokenizer_model_id
            )
            logger.info("βœ“ StepAudioTokenizer loaded")

            # Initialize common TTS engine (avoid CUDA initialization in main process)
            common_tts_engine = StepAudioTTS(
                os.path.join(args_global.model_path, "Step-Audio-EditX"),
                encoder,
                model_source=model_source,
                tts_model_id=args_global.tts_model_id,
                quantization_config=args_global.quantization,
                torch_dtype=torch_dtype,
                device_map=args_global.device_map,
            )
            logger.info("βœ“ StepCommonAudioTTS loaded")
            print("Models initialized inside GPU context.")

            if ZEROGPU_AVAILABLE:
                logger.info("πŸ’‘ Models loaded inside GPU context - ready for inference")
            else:
                logger.info("πŸ’‘ Models loaded - ready for inference")

        except Exception as e:
            logger.error(f"❌ Error loading models: {e}")
            raise

def get_model_config():
    """Get model configuration without initializing GPU models"""
    if args_global is None:
        raise RuntimeError("Global args not set. Cannot get model config.")

    return {
        "encoder_path": os.path.join(args_global.model_path, "Step-Audio-Tokenizer"),
        "tts_path": os.path.join(args_global.model_path, "Step-Audio-EditX"),
        "model_source": args_global.model_source,
        "tokenizer_model_id": args_global.tokenizer_model_id,
        "tts_model_id": args_global.tts_model_id
    }

def get_gpu_duration(audio_input, text_input, target_text, task_type, task_info):
    """Dynamic GPU duration based on whether models need initialization"""
    global common_tts_engine

    if common_tts_engine is None:
        # First call - need time for model loading (up to 5 minutes)
        return 120  # Maximum allowed duration for model initialization
    else:
        # Subsequent calls - only inference time needed
        return 120  # Standard inference duration

@spaces.GPU(duration=get_gpu_duration)  # Dynamic duration based on model state
def process_audio_with_gpu(audio_input, text_input, target_text, task_type, task_info):
    """Process audio using GPU (models are loaded inside GPU context to avoid main process errors)"""
    global common_tts_engine

    # Initialize models if not already loaded (inside GPU context to avoid main process errors)
    if common_tts_engine is None:
        print("Initializing common_tts_engine inside GPU context...")
        logger.info("🎯 GPU allocated for 300s (first call with model loading)...")
        initialize_models()
        logger.info("βœ… Models loaded successfully inside GPU context")
    else:
        print("common_tts_engine already initialized.")
        logger.info("🎯 GPU allocated for 120s (inference with loaded models)...")

    try:
        # Use loaded models (first call may include loading time, subsequent calls are fast)
        if task_type == "clone":
            output_audio, sr = common_tts_engine.clone(audio_input, text_input, target_text)
        else:
            output_audio, sr = common_tts_engine.edit(audio_input, text_input, task_type, task_info, target_text)

        logger.info("βœ… Audio processing completed")
        return output_audio, sr

    except Exception as e:
        logger.error(f"❌ Audio processing failed: {e}")
        raise
    # GPU automatically deallocated when function exits
    
@spaces.GPU(duration=30)
def transcribe_audio(audio_input, current_text):
    """Transcribe audio using Whisper ASR when prompt text is empty"""
    global whisper_asr
    # Only transcribe if current text is empty
    if current_text and current_text.strip():
        return current_text  # Keep existing text
    if not audio_input:
        return ""  # No audio to transcribe
    if whisper_asr is None:
        initialize_whisper()

    try:
        # Transcribe audio
        transcribed_text = whisper_asr(audio_input)
        logger.info(f"Audio transcribed: {transcribed_text}")
        return transcribed_text
    except Exception as e:
        logger.error(f"Failed to transcribe audio: {e}")
        return ""

# Save audio to temporary directory
def save_audio(audio_type, audio_data, sr, tmp_dir):
    """Save audio data to a temporary file with timestamp"""
    current_time = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
    save_path = os.path.join(tmp_dir, audio_type, f"{current_time}.wav")
    os.makedirs(os.path.dirname(save_path), exist_ok=True)

    try:
        if isinstance(audio_data, torch.Tensor):
            torchaudio.save(save_path, audio_data, sr)
        else:
            sf.write(save_path, audio_data, sr)
        logger.debug(f"Audio saved to: {save_path}")
        return save_path
    except Exception as e:
        logger.error(f"Failed to save audio: {e}")
        raise


class EditxTab:
    """Audio editing and voice cloning interface tab"""

    def __init__(self, args):
        self.args = args
        self.edit_type_list = list(get_supported_edit_types().keys())
        self.logger = logging.getLogger(f"{__name__}.{self.__class__.__name__}")
        self.enable_auto_transcribe = getattr(args, 'enable_auto_transcribe', False)

    def history_messages_to_show(self, messages):
        """Convert message history to gradio chatbot format"""
        show_msgs = []
        for message in messages:
            edit_type = message['edit_type']
            edit_info = message['edit_info']
            source_text = message['source_text']
            target_text = message['target_text']
            raw_audio_part = message['raw_wave']
            edit_audio_part = message['edit_wave']
            type_str = f"{edit_type}-{edit_info}" if edit_info is not None else f"{edit_type}"
            show_msgs.extend([
                {"role": "user", "content": f"δ»»εŠ‘η±»εž‹οΌš{type_str}\nζ–‡ζœ¬οΌš{source_text}"},
                {"role": "user", "content": gr.Audio(value=raw_audio_part, interactive=False)},
                {"role": "assistant", "content": f"θΎ“ε‡ΊιŸ³ι’‘οΌš\nζ–‡ζœ¬οΌš{target_text}"},
                {"role": "assistant", "content": gr.Audio(value=edit_audio_part, interactive=False)}
            ])
        return show_msgs

    def generate_clone(self, prompt_text_input, prompt_audio_input, generated_text, edit_type, edit_info, state):
        """Generate cloned audio (models are loaded on first GPU call)"""
        self.logger.info("Starting voice cloning process")
        state['history_audio'] = []
        state['history_messages'] = []

        # Input validation
        if not prompt_text_input or prompt_text_input.strip() == "":
            error_msg = "[Error] Uploaded text cannot be empty."
            self.logger.error(error_msg)
            return [{"role": "user", "content": error_msg}], state
        if not prompt_audio_input:
            error_msg = "[Error] Uploaded audio cannot be empty."
            self.logger.error(error_msg)
            return [{"role": "user", "content": error_msg}], state
        if not generated_text or generated_text.strip() == "":
            error_msg = "[Error] Clone content cannot be empty."
            self.logger.error(error_msg)
            return [{"role": "user", "content": error_msg}], state
        if edit_type != "clone":
            error_msg = "[Error] CLONE button must use clone task."
            self.logger.error(error_msg)
            return [{"role": "user", "content": error_msg}], state

        try:
            # Use GPU inference with models loaded inside GPU context
            output_audio, output_sr = process_audio_with_gpu(
                prompt_audio_input, prompt_text_input, generated_text, "clone", edit_info
            )

            if output_audio is not None and output_sr is not None:
                # Convert tensor to numpy if needed
                if isinstance(output_audio, torch.Tensor):
                    audio_numpy = output_audio.cpu().numpy().squeeze()
                else:
                    audio_numpy = output_audio

                # Load original audio for comparison
                input_audio_data_numpy, input_sample_rate = librosa.load(prompt_audio_input)

                # Create message for history
                cur_assistant_msg = {
                    "edit_type": edit_type,
                    "edit_info": edit_info,
                    "source_text": prompt_text_input,
                    "target_text": generated_text,
                    "raw_wave": (input_sample_rate, input_audio_data_numpy),
                    "edit_wave": (output_sr, audio_numpy),
                }
                state["history_audio"].append((output_sr, audio_numpy, generated_text))
                state["history_messages"].append(cur_assistant_msg)

                show_msgs = self.history_messages_to_show(state["history_messages"])
                self.logger.info("Voice cloning completed successfully")
                return show_msgs, state
            else:
                error_msg = "[Error] Clone failed"
                self.logger.error(error_msg)
                return [{"role": "user", "content": error_msg}], state

        except Exception as e:
            error_msg = f"[Error] Clone failed: {str(e)}"
            self.logger.error(error_msg)
            return [{"role": "user", "content": error_msg}], state
        
    def generate_edit(self, prompt_text_input, prompt_audio_input, generated_text, edit_type, edit_info, state):
        """Generate edited audio (models are loaded on first GPU call)"""
        self.logger.info("Starting audio editing process")

        # Input validation
        if not prompt_audio_input:
            error_msg = "[Error] Uploaded audio cannot be empty."
            self.logger.error(error_msg)
            return [{"role": "user", "content": error_msg}], state

        try:
            # Determine which audio to use
            if len(state["history_audio"]) == 0:
                # First edit - use uploaded audio
                audio_to_edit = prompt_audio_input
                text_to_use = prompt_text_input
                self.logger.debug("Using prompt audio, no history found")
            else:
                # Use previous edited audio - save it to temp file first
                sample_rate, audio_numpy, previous_text = state["history_audio"][-1]
                temp_path = save_audio("temp", audio_numpy, sample_rate, self.args.tmp_dir)
                audio_to_edit = temp_path
                text_to_use = previous_text
                self.logger.debug(f"Using previous audio from history, count: {len(state['history_audio'])}")

            # For para-linguistic, use generated_text; otherwise use source text
            if edit_type not in {"paralinguistic"}:
                generated_text = text_to_use

            # Use GPU inference with models loaded inside GPU context
            output_audio, output_sr = process_audio_with_gpu(
                audio_to_edit, text_to_use, generated_text, edit_type, edit_info
            )

            if output_audio is not None and output_sr is not None:
                # Convert tensor to numpy if needed
                if isinstance(output_audio, torch.Tensor):
                    audio_numpy = output_audio.cpu().numpy().squeeze()
                else:
                    audio_numpy = output_audio

                # Load original audio for comparison
                if len(state["history_audio"]) == 0:
                    input_audio_data_numpy, input_sample_rate = librosa.load(prompt_audio_input)
                else:
                    input_sample_rate, input_audio_data_numpy, _ = state["history_audio"][-1]

                # Create message for history
                cur_assistant_msg = {
                    "edit_type": edit_type,
                    "edit_info": edit_info,
                    "source_text": text_to_use,
                    "target_text": generated_text,
                    "raw_wave": (input_sample_rate, input_audio_data_numpy),
                    "edit_wave": (output_sr, audio_numpy),
                }
                state["history_audio"].append((output_sr, audio_numpy, generated_text))
                state["history_messages"].append(cur_assistant_msg)

                show_msgs = self.history_messages_to_show(state["history_messages"])
                self.logger.info("Audio editing completed successfully")
                return show_msgs, state
            else:
                error_msg = "[Error] Edit failed"
                self.logger.error(error_msg)
                return [{"role": "user", "content": error_msg}], state

        except Exception as e:
            error_msg = f"[Error] Edit failed: {str(e)}"
            self.logger.error(error_msg)
            return [{"role": "user", "content": error_msg}], state

    def clear_history(self, state):
        """Clear conversation history"""
        state["history_messages"] = []
        state["history_audio"] = []
        return [], state

    def init_state(self):
        """Initialize conversation state"""
        return {
            "history_messages": [],
            "history_audio": []
        }

    def register_components(self):
        """Register gradio components - maintaining exact layout from original"""
        with gr.Tab("Editx"):
            with gr.Row():
                with gr.Column():
                    self.model_input = gr.Textbox(label="Model Name", value="Step-Audio-EditX", scale=1)
                    self.prompt_text_input = gr.Textbox(label="Prompt Text", value="", scale=1)
                    self.prompt_audio_input = gr.Audio(
                        sources=["upload", "microphone"],
                        format="wav",
                        type="filepath",
                        label="Input Audio",
                    )
                    self.generated_text = gr.Textbox(label="Target Text", lines=1, max_lines=200, max_length=1000)
                with gr.Column():
                    with gr.Row():
                        self.edit_type = gr.Dropdown(label="Task", choices=self.edit_type_list, value="clone")
                        self.edit_info = gr.Dropdown(label="Sub-task", choices=[], value=None)
                    self.chat_box = gr.Chatbot(label="History", type="messages", height=480*1)
            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        self.button_tts = gr.Button("CLONE", variant="primary")
                        self.button_edit = gr.Button("EDIT", variant="primary")
                with gr.Column():
                    self.clean_history_submit = gr.Button("Clear History", variant="primary")

            gr.Markdown("---")
            gr.Markdown("""
                **Button Description:**
                - CLONE: Synthesizes audio based on uploaded audio and text, only used for clone mode, will clear history information when used.
                - EDIT: Edits based on uploaded audio, or continues to stack edit effects based on the previous round of generated audio.
                """)
            gr.Markdown("""
                **Operation Workflow:**
                - Upload the audio to be edited on the left side and fill in the corresponding text content of the audio;
                - If the task requires modifying text content (such as clone, para-linguistic), fill in the text to be synthesized in the "clone text" field. For all other tasks, keep the uploaded audio text content unchanged;
                - Select tasks and subtasks on the right side (some tasks have no subtasks, such as vad, etc.);
                - Click the "CLONE" or "EDIT" button on the left side, and audio will be generated in the dialog box on the right side.
                """)
            gr.Markdown("""
                **Para-linguistic Description:**
                - Supported tags include: [Breathing] [Laughter] [Surprise-oh] [Confirmation-en] [Uhm] [Surprise-ah] [Surprise-wa] [Sigh] [Question-ei] [Dissatisfaction-hnn]
                - Example:
                    - Fill in "clone text" field: "Great, the weather is so nice today." Click the "CLONE" button to get audio.
                    - Change "clone text" field to: "Great[Laughter], the weather is so nice today[Surprise-ah]." Click the "EDIT" button to get para-linguistic audio.
                """)

    def register_events(self):
        """Register event handlers"""
        # Create independent state for each session
        state = gr.State(self.init_state())

        self.button_tts.click(self.generate_clone,
            inputs=[self.prompt_text_input, self.prompt_audio_input, self.generated_text, self.edit_type, self.edit_info, state],
            outputs=[self.chat_box, state])
        self.button_edit.click(self.generate_edit,
            inputs=[self.prompt_text_input, self.prompt_audio_input, self.generated_text, self.edit_type, self.edit_info, state],
            outputs=[self.chat_box, state])

        self.clean_history_submit.click(self.clear_history, inputs=[state], outputs=[self.chat_box, state])
        self.edit_type.change(
            fn=self.update_edit_info,
            inputs=self.edit_type,
            outputs=self.edit_info,
        )

        # Add audio transcription event only if enabled
        if self.enable_auto_transcribe:
            self.prompt_audio_input.change(
                fn=transcribe_audio,
                inputs=[self.prompt_audio_input, self.prompt_text_input],
                outputs=self.prompt_text_input,
            )

    def update_edit_info(self, category):
        """Update sub-task dropdown based on main task selection"""
        category_items = get_supported_edit_types()
        choices = category_items.get(category, [])
        value = None if len(choices) == 0 else choices[0]
        return gr.Dropdown(label="Sub-task", choices=choices, value=value)


def launch_demo(args, editx_tab):
    """Launch the gradio demo"""
    with gr.Blocks(
            theme=gr.themes.Soft(), 
            title="πŸŽ™οΈ Step-Audio-EditX",
            css="""
    :root {
        --font: "Helvetica Neue", Helvetica, Arial, sans-serif;
        --font-mono: "SFMono-Regular", Consolas, "Liberation Mono", Menlo, monospace;
    }
    """) as demo:
        gr.Markdown("## πŸŽ™οΈ Step-Audio-EditX")
        gr.Markdown("Audio Editing and Zero-Shot Cloning using Step-Audio-EditX")

        # Register components
        editx_tab.register_components()

        # Register events
        editx_tab.register_events()

    # Launch demo
    demo.queue().launch(
        server_name=args.server_name,
        server_port=args.server_port,
        share=args.share if hasattr(args, 'share') else False
    )


if __name__ == "__main__":
    # Parse command line arguments
    parser = argparse.ArgumentParser(description="Step-Audio Edit Demo")
    parser.add_argument("--model-path", type=str, default="stepfun-ai", help="Model path.")
    parser.add_argument("--server-name", type=str, default="0.0.0.0", help="Demo server name.")
    parser.add_argument("--server-port", type=int, default=7860, help="Demo server port.")
    parser.add_argument("--tmp-dir", type=str, default="/tmp/gradio", help="Save path.")
    parser.add_argument("--share", action="store_true", help="Share gradio app.")

    # Multi-source loading support parameters
    parser.add_argument(
        "--model-source",
        type=str,
        default="huggingface",
        choices=["auto", "local", "modelscope", "huggingface"],
        help="Model source: auto (detect automatically), local, modelscope, or huggingface"
    )
    parser.add_argument(
        "--tokenizer-model-id",
        type=str,
        default="dengcunqin/speech_paraformer-large_asr_nat-zh-cantonese-en-16k-vocab8501-online",
        help="Tokenizer model ID for online loading"
    )
    parser.add_argument(
        "--tts-model-id",
        type=str,
        default=None,
        help="TTS model ID for online loading (if different from model-path)"
    )
    parser.add_argument(
        "--quantization",
        type=str,
        default=None,
        choices=["int4", "int8"],
        help="Enable quantization for the TTS model to reduce memory usage."
             "Choices: int4 (online), int8 (online)."
             "When quantization is enabled, data types are handled automatically by the quantization library."
    )
    parser.add_argument(
        "--torch-dtype",
        type=str,
        default="bfloat16",
        choices=["float16", "bfloat16", "float32"],
        help="PyTorch data type for model operations. This setting only applies when quantization is disabled. "
             "When quantization is enabled, data types are managed automatically."
    )
    parser.add_argument(
        "--device-map",
        type=str,
        default="cuda",
        help="Device mapping for model loading (default: cuda)"
    )
    parser.add_argument(
        "--enable-auto-transcribe",
        action="store_true",
        help="Enable automatic audio transcription when uploading audio files (default: disabled)"
    )
    parser.set_defaults(enable_auto_transcribe=True)

    args = parser.parse_args()

    # Store args globally for model configuration
    args_global = args
    logger.info(f"Configuration loaded:")
    
    # Map string arguments to actual types
    source_mapping = {
        "auto": ModelSource.AUTO,
        "local": ModelSource.LOCAL,
        "modelscope": ModelSource.MODELSCOPE,
        "huggingface": ModelSource.HUGGINGFACE
    }
    model_source = source_mapping[args.model_source]

    # Map torch dtype string to actual torch dtype
    dtype_mapping = {
        "float16": torch.float16,
        "bfloat16": torch.bfloat16,
        "float32": torch.float32
    }
    torch_dtype = dtype_mapping[args.torch_dtype]

    logger.info(f"Loading models with source: {args.model_source}")
    logger.info(f"Model path: {args.model_path}")
    logger.info(f"Tokenizer model ID: {args.tokenizer_model_id}")
    logger.info(f"Torch dtype: {args.torch_dtype}")
    logger.info(f"Device map: {args.device_map}")
    if args.tts_model_id:
        logger.info(f"TTS model ID: {args.tts_model_id}")
    if args.quantization:
        logger.info(f"πŸ”§ {args.quantization.upper()} quantization enabled")

    # Create EditxTab instance
    editx_tab = EditxTab(args)

    # Launch demo
    launch_demo(args, editx_tab)