File size: 14,124 Bytes
6852edb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
# Copyright (c) 2024 NVIDIA CORPORATION.
#   Licensed under the MIT license.

# Adapted from https://github.com/jik876/hifi-gan under the MIT license.
#   LICENSE is in incl_licenses directory.

import os
import json
from pathlib import Path
from typing import Optional, Union, Dict

import torch
import torch.nn as nn
from torch.nn import Conv1d, ConvTranspose1d
from torch.nn.utils import weight_norm, remove_weight_norm

from stepvocoder.cosyvoice2.bigvgan import activations
from stepvocoder.cosyvoice2.bigvgan.bigvgan_utils import init_weights, get_padding
from stepvocoder.cosyvoice2.bigvgan.alias_free_activation.torch.act import Activation1d as TorchActivation1d


class AMPBlock1(torch.nn.Module):
    """
    AMPBlock applies Snake / SnakeBeta activation functions with trainable parameters that control periodicity, defined for each layer.
    AMPBlock1 has additional self.convs2 that contains additional Conv1d layers with a fixed dilation=1 followed by each layer in self.convs1

    Args:
        h (AttrDict): Hyperparameters.
        channels (int): Number of convolution channels.
        kernel_size (int): Size of the convolution kernel. Default is 3.
        dilation (tuple): Dilation rates for the convolutions. Each dilation layer has two convolutions. Default is (1, 3, 5).
        activation (str): Activation function type. Should be either 'snake' or 'snakebeta'. Default is None.
    """

    def __init__(
        self,
        channels: int,
        kernel_size: int = 3,
        dilation: tuple = (1, 3, 5),
        activation: str = None,
        use_cuda_kernel: bool = False,
        snake_logscale: bool = True
    ):
        super().__init__()
        
        self.convs1 = nn.ModuleList(
            [
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        stride=1,
                        dilation=d,
                        padding=get_padding(kernel_size, d),
                    )
                )
                for d in dilation
            ]
        )
        self.convs1.apply(init_weights)

        self.convs2 = nn.ModuleList(
            [
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        stride=1,
                        dilation=1,
                        padding=get_padding(kernel_size, 1),
                    )
                )
                for _ in range(len(dilation))
            ]
        )
        self.convs2.apply(init_weights)

        self.num_layers = len(self.convs1) + len(
            self.convs2
        )  # Total number of conv layers

        # Select which Activation1d, lazy-load cuda version to ensure backward compatibility
        if use_cuda_kernel:
            from alias_free_activation.cuda.activation1d import (
                Activation1d as CudaActivation1d,
            )

            Activation1d = CudaActivation1d
        else:
            Activation1d = TorchActivation1d

        # Activation functions
        if activation == "snake":
            self.activations = nn.ModuleList(
                [
                    Activation1d(
                        activation=activations.Snake(
                            channels, alpha_logscale=snake_logscale
                        )
                    )
                    for _ in range(self.num_layers)
                ]
            )
        elif activation == "snakebeta":
            self.activations = nn.ModuleList(
                [
                    Activation1d(
                        activation=activations.SnakeBeta(
                            channels, alpha_logscale=snake_logscale
                        )
                    )
                    for _ in range(self.num_layers)
                ]
            )
        else:
            raise NotImplementedError(
                "activation incorrectly specified. check the config file and look for 'activation'."
            )

    def forward(self, x):
        acts1, acts2 = self.activations[::2], self.activations[1::2]
        for c1, c2, a1, a2 in zip(self.convs1, self.convs2, acts1, acts2):
            xt = a1(x)
            xt = c1(xt)
            xt = a2(xt)
            xt = c2(xt)
            x = xt + x

        return x

    def remove_weight_norm(self):
        for l in self.convs1:
            remove_weight_norm(l)
        for l in self.convs2:
            remove_weight_norm(l)


class AMPBlock2(torch.nn.Module):
    """
    AMPBlock applies Snake / SnakeBeta activation functions with trainable parameters that control periodicity, defined for each layer.
    Unlike AMPBlock1, AMPBlock2 does not contain extra Conv1d layers with fixed dilation=1

    Args:
        h (AttrDict): Hyperparameters.
        channels (int): Number of convolution channels.
        kernel_size (int): Size of the convolution kernel. Default is 3.
        dilation (tuple): Dilation rates for the convolutions. Each dilation layer has two convolutions. Default is (1, 3, 5).
        activation (str): Activation function type. Should be either 'snake' or 'snakebeta'. Default is None.
    """

    def __init__(
        self,
        channels: int,
        kernel_size: int = 3,
        dilation: tuple = (1, 3, 5),
        activation: str = None,
        use_cuda_kernel: bool = False,
        snake_logscale: bool = True
    ):
        super().__init__()
        
        self.convs = nn.ModuleList(
            [
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        stride=1,
                        dilation=d,
                        padding=get_padding(kernel_size, d),
                    )
                )
                for d in dilation
            ]
        )
        self.convs.apply(init_weights)

        self.num_layers = len(self.convs)  # Total number of conv layers

        # Select which Activation1d, lazy-load cuda version to ensure backward compatibility
        if use_cuda_kernel:
            from alias_free_activation.cuda.activation1d import (
                Activation1d as CudaActivation1d,
            )

            Activation1d = CudaActivation1d
        else:
            Activation1d = TorchActivation1d

        # Activation functions
        if activation == "snake":
            self.activations = nn.ModuleList(
                [
                    Activation1d(
                        activation=activations.Snake(
                            channels, alpha_logscale=snake_logscale
                        )
                    )
                    for _ in range(self.num_layers)
                ]
            )
        elif activation == "snakebeta":
            self.activations = nn.ModuleList(
                [
                    Activation1d(
                        activation=activations.SnakeBeta(
                            channels, alpha_logscale=snake_logscale
                        )
                    )
                    for _ in range(self.num_layers)
                ]
            )
        else:
            raise NotImplementedError(
                "activation incorrectly specified. check the config file and look for 'activation'."
            )

    def forward(self, x):
        for c, a in zip(self.convs, self.activations):
            xt = a(x)
            xt = c(xt)
            x = xt + x
        return x

    def remove_weight_norm(self):
        for l in self.convs:
            remove_weight_norm(l)


class BigVGAN(torch.nn.Module):
    """
    BigVGAN is a neural vocoder model that applies anti-aliased periodic activation for residual blocks (resblocks).
    New in BigVGAN-v2: it can optionally use optimized CUDA kernels for AMP (anti-aliased multi-periodicity) blocks.

    Args:
        use_cuda_kernel (bool): If set to True, loads optimized CUDA kernels for AMP. This should be used for inference only, as training is not supported with CUDA kernels.

    Note:
        - The `use_cuda_kernel` parameter should be used for inference only, as training with CUDA kernels is not supported.
        - Ensure that the activation function is correctly specified in the hyperparameters (h.activation).
    """

    def __init__(
            self,
            use_cuda_kernel: bool = False,
            num_mels: int = 80,
            upsample_initial_channel: int = 512,
            upsample_rates: list[int] = [5, 4, 3, 2, 2, 2],
            upsample_kernel_sizes: list[int] = [11, 8, 7, 4, 4, 4],
            resblock: str = "1",
            resblock_kernel_sizes: list[int] = [3, 7, 11],
            resblock_dilation_sizes: list[tuple] = [(1, 3, 5), (1, 3, 5), (1, 3, 5)],
            activation: str = "snakebeta",
            snake_logscale: bool = True,
            use_bias_at_final: bool = False,
            use_tanh_at_final: bool = False,
    ):
        super().__init__()
        self.use_cuda_kernel = use_cuda_kernel

        # Select which Activation1d, lazy-load cuda version to ensure backward compatibility
        if self.use_cuda_kernel:
            from alias_free_activation.cuda.activation1d import (
                Activation1d as CudaActivation1d,
            )

            Activation1d = CudaActivation1d
        else:
            Activation1d = TorchActivation1d

        self.num_kernels = len(resblock_kernel_sizes)
        self.num_upsamples = len(upsample_rates)

        # Pre-conv
        # for context smoothing, the padding=3 in the first layer conv_pre is removed
        self.conv_pre = weight_norm(
            Conv1d(num_mels, upsample_initial_channel, 7, 1, padding=0) 
        )

        # Define which AMPBlock to use. BigVGAN uses AMPBlock1 as default
        if resblock == "1":
            resblock_class = AMPBlock1
        elif resblock == "2":
            resblock_class = AMPBlock2
        else:
            raise ValueError(
                f"Incorrect resblock class specified in hyperparameters. Got {resblock}"
            )

        # Transposed conv-based upsamplers. does not apply anti-aliasing
        self.ups = nn.ModuleList()
        for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
            self.ups.append(
                nn.ModuleList(
                    [
                        weight_norm(
                            ConvTranspose1d(
                                upsample_initial_channel // (2**i),
                                upsample_initial_channel // (2 ** (i + 1)),
                                k,
                                u,
                                padding=(k - u) // 2,
                            )
                        )
                    ]
                )
            )

        # Residual blocks using anti-aliased multi-periodicity composition modules (AMP)
        self.resblocks = nn.ModuleList()
        for i in range(len(self.ups)):
            ch = upsample_initial_channel // (2 ** (i + 1))
            for j, (k, d) in enumerate(
                zip(resblock_kernel_sizes, resblock_dilation_sizes)
            ):
                self.resblocks.append(
                    resblock_class(ch, k, d, activation=activation, use_cuda_kernel=self.use_cuda_kernel, snake_logscale=snake_logscale)
                )

        # Post-conv
        activation_post = (
            activations.Snake(ch, alpha_logscale=snake_logscale)
            if activation == "snake"
            else (
                activations.SnakeBeta(ch, alpha_logscale=snake_logscale)
                if activation == "snakebeta"
                else None
            )
        )
        if activation_post is None:
            raise NotImplementedError(
                "activation incorrectly specified. check the config file and look for 'activation'."
            )

        self.activation_post = Activation1d(activation=activation_post)

        # Whether to use bias for the final conv_post. Default to True for backward compatibility
        self.use_bias_at_final = use_bias_at_final
        self.conv_post = weight_norm(
            Conv1d(ch, 1, 7, 1, padding=3, bias=self.use_bias_at_final)
        )

        # Weight initialization
        for i in range(len(self.ups)):
            self.ups[i].apply(init_weights)
        self.conv_post.apply(init_weights)

        # Final tanh activation. Defaults to True for backward compatibility
        self.use_tanh_at_final = use_tanh_at_final

    def forward(self, x):
        # Pre-conv
        x = self.conv_pre(x)

        for i in range(self.num_upsamples):
            # Upsampling
            for i_up in range(len(self.ups[i])):
                x = self.ups[i][i_up](x)
            # AMP blocks
            xs = None
            for j in range(self.num_kernels):
                if xs is None:
                    xs = self.resblocks[i * self.num_kernels + j](x)
                else:
                    xs += self.resblocks[i * self.num_kernels + j](x)
            x = xs / self.num_kernels

        # Post-conv
        x = self.activation_post(x)
        x = self.conv_post(x)
        # Final tanh activation
        if self.use_tanh_at_final:
            x = torch.tanh(x)
        else:
            x = torch.clamp(x, min=-1.0, max=1.0)  # Bound the output to [-1, 1]

        return x

    def remove_weight_norm(self):
        try:
            print("Removing weight norm...")
            for l in self.ups:
                for l_i in l:
                    remove_weight_norm(l_i)
            for l in self.resblocks:
                l.remove_weight_norm()
            remove_weight_norm(self.conv_pre)
            remove_weight_norm(self.conv_post)
        except ValueError:
            print("[INFO] Model already removed weight norm. Skipping!")
            pass

    def _init_cuda_graph(self):
        pass

    @torch.inference_mode()
    def inference(self, x):
        x = self.forward(x)
        return x