Step-Audio-EditX / tokenizer.py
xieli
audio edit
6852edb
raw
history blame
8.23 kB
import io
import threading
import time
import os
import numpy as np
import torch
import torchaudio
import onnxruntime
import whisper
from funasr_detach import AutoModel
from utils import resample_audio, energy_norm_fn, trim_silence
from model_loader import model_loader, ModelSource
class StepAudioTokenizer:
def __init__(
self,
encoder_path,
model_source=ModelSource.AUTO,
funasr_model_id="dengcunqin/speech_paraformer-large_asr_nat-zh-cantonese-en-16k-vocab8501-online"
):
"""
Initialize StepAudioTokenizer
Args:
encoder_path: Encoder path
model_source: Model source (auto/local/modelscope/huggingface)
funasr_model_id: FunASR model ID or path
"""
funasr_model_path = os.path.join(encoder_path, funasr_model_id)
# Load FunASR model - use unified loader to handle all modes
try:
self.funasr_model = model_loader.load_funasr_model(
encoder_path,
funasr_model_path,
source=model_source,
model_revision="main"
)
except Exception as e:
print(f"Failed to load FunASR model from {model_source}: {e}")
# Fallback to default method
self.funasr_model = AutoModel(model=funasr_model_path, model_revision="main")
# Load other resource files (these are usually local files)
kms_path = os.path.join(self.funasr_model.repo_path, "linguistic_tokenizer.npy")
cosy_tokenizer_path = os.path.join(self.funasr_model.repo_path, "speech_tokenizer_v1.onnx")
if not os.path.exists(kms_path):
raise FileNotFoundError(f"KMS file not found: {kms_path}")
if not os.path.exists(cosy_tokenizer_path):
raise FileNotFoundError(f"Cosy tokenizer file not found: {cosy_tokenizer_path}")
self.kms = torch.tensor(np.load(kms_path))
providers = ["CUDAExecutionProvider"]
session_option = onnxruntime.SessionOptions()
session_option.graph_optimization_level = (
onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
)
session_option.intra_op_num_threads = 1
self.ort_session = onnxruntime.InferenceSession(
cosy_tokenizer_path, sess_options=session_option, providers=providers
)
self.chunk_size = [0, 4, 5]
self.encoder_chunk_look_back = 4
self.decoder_chunk_look_back = 1
self.vq02_sessions = {}
self.vq02_lock = threading.Lock()
self.vq06_lock = threading.Lock()
def __call__(self, audio, sr):
_, vq02, vq06 = self.wav2token(audio, sr, False)
text = self.merge_vq0206_to_token_str(vq02, vq06)
return text
def preprocess_wav(self, audio, sample_rate, enable_trim=True, energy_norm=True):
audio = resample_audio(audio, sample_rate, 16000)
if energy_norm:
audio = energy_norm_fn(audio)
if enable_trim:
audio = audio.cpu().numpy().squeeze(0)
audio = trim_silence(audio, 16000)
audio = torch.from_numpy(audio)
audio = audio.unsqueeze(0)
return audio
def wav2token(self, audio, sample_rate, enable_trim=True, energy_norm=True):
audio = self.preprocess_wav(
audio, sample_rate, enable_trim=enable_trim, energy_norm=energy_norm
)
vq02_ori = self.get_vq02_code(audio)
vq02 = [int(x) + 65536 for x in vq02_ori]
vq06_ori = self.get_vq06_code(audio)
vq06 = [int(x) + 65536 + 1024 for x in vq06_ori]
chunk = 1
chunk_nums = min(len(vq06) // (3 * chunk), len(vq02) // (2 * chunk))
speech_tokens = []
for idx in range(chunk_nums):
speech_tokens += vq02[idx * chunk * 2 : (idx + 1) * chunk * 2]
speech_tokens += vq06[idx * chunk * 3 : (idx + 1) * chunk * 3]
return speech_tokens, vq02_ori, vq06_ori
def get_vq02_code(self, audio, session_id=None, is_final=True):
_tmp_wav = io.BytesIO()
torchaudio.save(_tmp_wav, audio, 16000, format="wav")
_tmp_wav.seek(0)
with self.vq02_lock:
cache = {}
if session_id in self.vq02_sessions:
cache = self.vq02_sessions[session_id].get("cache", {})
res, new_cache = self.funasr_model.infer_encoder(
input=[_tmp_wav],
chunk_size=self.chunk_size,
encoder_chunk_look_back=self.encoder_chunk_look_back,
decoder_chunk_look_back=self.decoder_chunk_look_back,
device=0,
is_final=is_final,
cache=cache,
)
c_list = []
for j, res_ in enumerate(res):
feat = res_["enc_out"]
if len(feat) > 0:
c_list = self.dump_label([feat], self.kms)[0]
if is_final:
if session_id in self.vq02_sessions:
self.vq02_sessions.pop(session_id)
else:
if isinstance(session_id, str) and len(session_id) > 0:
self.vq02_sessions[session_id] = {
"cache": new_cache,
"update_time": time.time(),
}
return c_list
def get_vq06_code(self, audio):
def split_audio(audio, chunk_duration=480000):
start = 0
chunks = []
while start < len(audio):
end = min(start + chunk_duration, len(audio))
chunk = audio[start:end]
if len(chunk) < 480:
pass
else:
chunks.append(chunk)
start = end
return chunks
with self.vq06_lock:
audio = audio.squeeze(0)
chunk_audios = split_audio(audio, chunk_duration=30 * 16000) # Maximum support 30s
speech_tokens = []
for chunk in chunk_audios:
duration = round(chunk.shape[0] / 16000, 2)
feat = whisper.log_mel_spectrogram(chunk, n_mels=128)
feat = feat.unsqueeze(0)
feat_len = np.array([feat.shape[2]], dtype=np.int32)
chunk_token = (
self.ort_session.run(
None,
{
self.ort_session.get_inputs()[0]
.name: feat.detach()
.cpu()
.numpy(),
self.ort_session.get_inputs()[1].name: feat_len,
},
)[0]
.flatten()
.tolist()
)
assert abs(len(chunk_token) - duration * 25) <= 2
speech_tokens += chunk_token
return speech_tokens
def kmean_cluster(self, samples, means):
dists = torch.cdist(samples, means)
indices = dists.argmin(dim=1).cpu().numpy()
return indices.tolist()
def dump_label(self, samples, mean):
dims = samples[0].shape[-1]
x_lens = [x.shape[1] for x in samples]
total_len = sum(x_lens)
x_sel = torch.FloatTensor(1, total_len, dims)
start_len = 0
for sample in samples:
sample_len = sample.shape[1]
end_len = start_len + sample_len
x_sel[:, start_len:end_len] = sample
start_len = end_len
dense_x = x_sel.squeeze(0)
indices = self.kmean_cluster(dense_x, mean)
indices_list = []
start_len = 0
for x_len in x_lens:
end_len = start_len + end_len
indices_list.append(indices[start_len:end_len])
return indices_list
def merge_vq0206_to_token_str(self, vq02, vq06):
_vq06 = [1024 + x for x in vq06]
result = []
i = 0
j = 0
while i < len(vq02) - 1 and j < len(_vq06) - 2:
sublist = vq02[i : i + 2] + _vq06[j : j + 3]
result.extend(sublist)
i += 2
j += 3
return "".join([f"<audio_{x}>" for x in result])