Spaces:
Running
on
Zero
Running
on
Zero
| #!/usr/bin/env python3 | |
| # -*- encoding: utf-8 -*- | |
| # Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. | |
| # MIT License (https://opensource.org/licenses/MIT) | |
| import torch | |
| import numpy as np | |
| import torch.nn.functional as F | |
| from contextlib import contextmanager | |
| from distutils.version import LooseVersion | |
| from typing import Any, List, Tuple, Optional | |
| from funasr_detach.register import tables | |
| from funasr_detach.train_utils.device_funcs import to_device | |
| from funasr_detach.train_utils.device_funcs import force_gatherable | |
| from funasr_detach.utils.load_utils import load_audio_text_image_video | |
| from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask | |
| from funasr_detach.models.ct_transformer.utils import ( | |
| split_to_mini_sentence, | |
| split_words, | |
| ) | |
| import jieba as jieba | |
| load_jieba = False | |
| if LooseVersion(torch.__version__) >= LooseVersion("1.6.0"): | |
| from torch.cuda.amp import autocast | |
| else: | |
| # Nothing to do if torch<1.6.0 | |
| def autocast(enabled=True): | |
| yield | |
| class CTTransformer(torch.nn.Module): | |
| """ | |
| Author: Speech Lab of DAMO Academy, Alibaba Group | |
| CT-Transformer: Controllable time-delay transformer for real-time punctuation prediction and disfluency detection | |
| https://arxiv.org/pdf/2003.01309.pdf | |
| """ | |
| def __init__( | |
| self, | |
| encoder: str = None, | |
| encoder_conf: dict = None, | |
| vocab_size: int = -1, | |
| punc_list: list = None, | |
| punc_weight: list = None, | |
| embed_unit: int = 128, | |
| att_unit: int = 256, | |
| dropout_rate: float = 0.5, | |
| ignore_id: int = -1, | |
| sos: int = 1, | |
| eos: int = 2, | |
| sentence_end_id: int = 3, | |
| **kwargs, | |
| ): | |
| super().__init__() | |
| punc_size = len(punc_list) | |
| if punc_weight is None: | |
| punc_weight = [1] * punc_size | |
| self.embed = torch.nn.Embedding(vocab_size, embed_unit) | |
| encoder_class = tables.encoder_classes.get(encoder) | |
| encoder = encoder_class(**encoder_conf) | |
| self.decoder = torch.nn.Linear(att_unit, punc_size) | |
| self.encoder = encoder | |
| self.punc_list = punc_list | |
| self.punc_weight = punc_weight | |
| self.ignore_id = ignore_id | |
| self.sos = sos | |
| self.eos = eos | |
| self.sentence_end_id = sentence_end_id | |
| def punc_forward(self, text: torch.Tensor, text_lengths: torch.Tensor, **kwargs): | |
| """Compute loss value from buffer sequences. | |
| Args: | |
| input (torch.Tensor): Input ids. (batch, len) | |
| hidden (torch.Tensor): Target ids. (batch, len) | |
| """ | |
| x = self.embed(text) | |
| # mask = self._target_mask(input) | |
| h, _, _ = self.encoder(x, text_lengths) | |
| y = self.decoder(h) | |
| return y, None | |
| def with_vad(self): | |
| return False | |
| def score( | |
| self, y: torch.Tensor, state: Any, x: torch.Tensor | |
| ) -> Tuple[torch.Tensor, Any]: | |
| """Score new token. | |
| Args: | |
| y (torch.Tensor): 1D torch.int64 prefix tokens. | |
| state: Scorer state for prefix tokens | |
| x (torch.Tensor): encoder feature that generates ys. | |
| Returns: | |
| tuple[torch.Tensor, Any]: Tuple of | |
| torch.float32 scores for next token (vocab_size) | |
| and next state for ys | |
| """ | |
| y = y.unsqueeze(0) | |
| h, _, cache = self.encoder.forward_one_step( | |
| self.embed(y), self._target_mask(y), cache=state | |
| ) | |
| h = self.decoder(h[:, -1]) | |
| logp = h.log_softmax(dim=-1).squeeze(0) | |
| return logp, cache | |
| def batch_score( | |
| self, ys: torch.Tensor, states: List[Any], xs: torch.Tensor | |
| ) -> Tuple[torch.Tensor, List[Any]]: | |
| """Score new token batch. | |
| Args: | |
| ys (torch.Tensor): torch.int64 prefix tokens (n_batch, ylen). | |
| states (List[Any]): Scorer states for prefix tokens. | |
| xs (torch.Tensor): | |
| The encoder feature that generates ys (n_batch, xlen, n_feat). | |
| Returns: | |
| tuple[torch.Tensor, List[Any]]: Tuple of | |
| batchfied scores for next token with shape of `(n_batch, vocab_size)` | |
| and next state list for ys. | |
| """ | |
| # merge states | |
| n_batch = len(ys) | |
| n_layers = len(self.encoder.encoders) | |
| if states[0] is None: | |
| batch_state = None | |
| else: | |
| # transpose state of [batch, layer] into [layer, batch] | |
| batch_state = [ | |
| torch.stack([states[b][i] for b in range(n_batch)]) | |
| for i in range(n_layers) | |
| ] | |
| # batch decoding | |
| h, _, states = self.encoder.forward_one_step( | |
| self.embed(ys), self._target_mask(ys), cache=batch_state | |
| ) | |
| h = self.decoder(h[:, -1]) | |
| logp = h.log_softmax(dim=-1) | |
| # transpose state of [layer, batch] into [batch, layer] | |
| state_list = [[states[i][b] for i in range(n_layers)] for b in range(n_batch)] | |
| return logp, state_list | |
| def nll( | |
| self, | |
| text: torch.Tensor, | |
| punc: torch.Tensor, | |
| text_lengths: torch.Tensor, | |
| punc_lengths: torch.Tensor, | |
| max_length: Optional[int] = None, | |
| vad_indexes: Optional[torch.Tensor] = None, | |
| vad_indexes_lengths: Optional[torch.Tensor] = None, | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| """Compute negative log likelihood(nll) | |
| Normally, this function is called in batchify_nll. | |
| Args: | |
| text: (Batch, Length) | |
| punc: (Batch, Length) | |
| text_lengths: (Batch,) | |
| max_lengths: int | |
| """ | |
| batch_size = text.size(0) | |
| # For data parallel | |
| if max_length is None: | |
| text = text[:, : text_lengths.max()] | |
| punc = punc[:, : text_lengths.max()] | |
| else: | |
| text = text[:, :max_length] | |
| punc = punc[:, :max_length] | |
| if self.with_vad(): | |
| # Should be VadRealtimeTransformer | |
| assert vad_indexes is not None | |
| y, _ = self.punc_forward(text, text_lengths, vad_indexes) | |
| else: | |
| # Should be TargetDelayTransformer, | |
| y, _ = self.punc_forward(text, text_lengths) | |
| # Calc negative log likelihood | |
| # nll: (BxL,) | |
| if self.training == False: | |
| _, indices = y.view(-1, y.shape[-1]).topk(1, dim=1) | |
| from sklearn.metrics import f1_score | |
| f1_score = f1_score( | |
| punc.view(-1).detach().cpu().numpy(), | |
| indices.squeeze(-1).detach().cpu().numpy(), | |
| average="micro", | |
| ) | |
| nll = torch.Tensor([f1_score]).repeat(text_lengths.sum()) | |
| return nll, text_lengths | |
| else: | |
| self.punc_weight = self.punc_weight.to(punc.device) | |
| nll = F.cross_entropy( | |
| y.view(-1, y.shape[-1]), | |
| punc.view(-1), | |
| self.punc_weight, | |
| reduction="none", | |
| ignore_index=self.ignore_id, | |
| ) | |
| # nll: (BxL,) -> (BxL,) | |
| if max_length is None: | |
| nll.masked_fill_(make_pad_mask(text_lengths).to(nll.device).view(-1), 0.0) | |
| else: | |
| nll.masked_fill_( | |
| make_pad_mask(text_lengths, maxlen=max_length + 1) | |
| .to(nll.device) | |
| .view(-1), | |
| 0.0, | |
| ) | |
| # nll: (BxL,) -> (B, L) | |
| nll = nll.view(batch_size, -1) | |
| return nll, text_lengths | |
| def forward( | |
| self, | |
| text: torch.Tensor, | |
| punc: torch.Tensor, | |
| text_lengths: torch.Tensor, | |
| punc_lengths: torch.Tensor, | |
| vad_indexes: Optional[torch.Tensor] = None, | |
| vad_indexes_lengths: Optional[torch.Tensor] = None, | |
| ): | |
| nll, y_lengths = self.nll( | |
| text, punc, text_lengths, punc_lengths, vad_indexes=vad_indexes | |
| ) | |
| ntokens = y_lengths.sum() | |
| loss = nll.sum() / ntokens | |
| stats = dict(loss=loss.detach()) | |
| # force_gatherable: to-device and to-tensor if scalar for DataParallel | |
| loss, stats, weight = force_gatherable((loss, stats, ntokens), loss.device) | |
| return loss, stats, weight | |
| def inference( | |
| self, | |
| data_in, | |
| data_lengths=None, | |
| key: list = None, | |
| tokenizer=None, | |
| frontend=None, | |
| **kwargs, | |
| ): | |
| assert len(data_in) == 1 | |
| text = load_audio_text_image_video( | |
| data_in, data_type=kwargs.get("kwargs", "text") | |
| )[0] | |
| vad_indexes = kwargs.get("vad_indexes", None) | |
| # text = data_in[0] | |
| # text_lengths = data_lengths[0] if data_lengths is not None else None | |
| split_size = kwargs.get("split_size", 20) | |
| jieba_usr_dict = kwargs.get("jieba_usr_dict", None) | |
| global load_jieba | |
| if load_jieba: | |
| jieba_usr_dict = jieba | |
| kwargs["jieba_usr_dict"] = "jieba_usr_dict" | |
| else: | |
| if jieba_usr_dict and isinstance(jieba_usr_dict, str): | |
| # import jieba | |
| jieba.load_userdict(jieba_usr_dict) | |
| jieba_usr_dict = jieba | |
| kwargs["jieba_usr_dict"] = "jieba_usr_dict" | |
| load_jieba = True | |
| tokens = split_words(text, jieba_usr_dict=jieba_usr_dict) | |
| tokens_int = tokenizer.encode(tokens) | |
| mini_sentences = split_to_mini_sentence(tokens, split_size) | |
| mini_sentences_id = split_to_mini_sentence(tokens_int, split_size) | |
| assert len(mini_sentences) == len(mini_sentences_id) | |
| cache_sent = [] | |
| cache_sent_id = torch.from_numpy(np.array([], dtype="int32")) | |
| new_mini_sentence = "" | |
| new_mini_sentence_punc = [] | |
| cache_pop_trigger_limit = 200 | |
| results = [] | |
| meta_data = {} | |
| punc_array = None | |
| for mini_sentence_i in range(len(mini_sentences)): | |
| mini_sentence = mini_sentences[mini_sentence_i] | |
| mini_sentence_id = mini_sentences_id[mini_sentence_i] | |
| mini_sentence = cache_sent + mini_sentence | |
| mini_sentence_id = np.concatenate((cache_sent_id, mini_sentence_id), axis=0) | |
| data = { | |
| "text": torch.unsqueeze(torch.from_numpy(mini_sentence_id), 0), | |
| "text_lengths": torch.from_numpy( | |
| np.array([len(mini_sentence_id)], dtype="int32") | |
| ), | |
| } | |
| data = to_device(data, kwargs["device"]) | |
| # y, _ = self.wrapped_model(**data) | |
| y, _ = self.punc_forward(**data) | |
| _, indices = y.view(-1, y.shape[-1]).topk(1, dim=1) | |
| punctuations = indices | |
| if indices.size()[0] != 1: | |
| punctuations = torch.squeeze(indices) | |
| assert punctuations.size()[0] == len(mini_sentence) | |
| # Search for the last Period/QuestionMark as cache | |
| if mini_sentence_i < len(mini_sentences) - 1: | |
| sentenceEnd = -1 | |
| last_comma_index = -1 | |
| for i in range(len(punctuations) - 2, 1, -1): | |
| if ( | |
| self.punc_list[punctuations[i]] == "。" | |
| or self.punc_list[punctuations[i]] == "?" | |
| ): | |
| sentenceEnd = i | |
| break | |
| if last_comma_index < 0 and self.punc_list[punctuations[i]] == ",": | |
| last_comma_index = i | |
| if ( | |
| sentenceEnd < 0 | |
| and len(mini_sentence) > cache_pop_trigger_limit | |
| and last_comma_index >= 0 | |
| ): | |
| # The sentence it too long, cut off at a comma. | |
| sentenceEnd = last_comma_index | |
| punctuations[sentenceEnd] = self.sentence_end_id | |
| cache_sent = mini_sentence[sentenceEnd + 1 :] | |
| cache_sent_id = mini_sentence_id[sentenceEnd + 1 :] | |
| mini_sentence = mini_sentence[0 : sentenceEnd + 1] | |
| punctuations = punctuations[0 : sentenceEnd + 1] | |
| # if len(punctuations) == 0: | |
| # continue | |
| punctuations_np = punctuations.cpu().numpy() | |
| new_mini_sentence_punc += [int(x) for x in punctuations_np] | |
| words_with_punc = [] | |
| for i in range(len(mini_sentence)): | |
| if ( | |
| i == 0 | |
| or self.punc_list[punctuations[i - 1]] == "。" | |
| or self.punc_list[punctuations[i - 1]] == "?" | |
| ) and len(mini_sentence[i][0].encode()) == 1: | |
| mini_sentence[i] = mini_sentence[i].capitalize() | |
| if i == 0: | |
| if len(mini_sentence[i][0].encode()) == 1: | |
| mini_sentence[i] = " " + mini_sentence[i] | |
| if i > 0: | |
| if ( | |
| len(mini_sentence[i][0].encode()) == 1 | |
| and len(mini_sentence[i - 1][0].encode()) == 1 | |
| ): | |
| mini_sentence[i] = " " + mini_sentence[i] | |
| words_with_punc.append(mini_sentence[i]) | |
| if self.punc_list[punctuations[i]] != "_": | |
| punc_res = self.punc_list[punctuations[i]] | |
| if len(mini_sentence[i][0].encode()) == 1: | |
| if punc_res == ",": | |
| punc_res = "," | |
| elif punc_res == "。": | |
| punc_res = "." | |
| elif punc_res == "?": | |
| punc_res = "?" | |
| words_with_punc.append(punc_res) | |
| new_mini_sentence += "".join(words_with_punc) | |
| # Add Period for the end of the sentence | |
| new_mini_sentence_out = new_mini_sentence | |
| new_mini_sentence_punc_out = new_mini_sentence_punc | |
| if mini_sentence_i == len(mini_sentences) - 1: | |
| if new_mini_sentence[-1] == "," or new_mini_sentence[-1] == "、": | |
| new_mini_sentence_out = new_mini_sentence[:-1] + "。" | |
| new_mini_sentence_punc_out = new_mini_sentence_punc[:-1] + [ | |
| self.sentence_end_id | |
| ] | |
| elif new_mini_sentence[-1] == ",": | |
| new_mini_sentence_out = new_mini_sentence[:-1] + "." | |
| new_mini_sentence_punc_out = new_mini_sentence_punc[:-1] + [ | |
| self.sentence_end_id | |
| ] | |
| elif ( | |
| new_mini_sentence[-1] != "。" | |
| and new_mini_sentence[-1] != "?" | |
| and len(new_mini_sentence[-1].encode()) != 1 | |
| ): | |
| new_mini_sentence_out = new_mini_sentence + "。" | |
| new_mini_sentence_punc_out = new_mini_sentence_punc[:-1] + [ | |
| self.sentence_end_id | |
| ] | |
| if len(punctuations): | |
| punctuations[-1] = 2 | |
| elif ( | |
| new_mini_sentence[-1] != "." | |
| and new_mini_sentence[-1] != "?" | |
| and len(new_mini_sentence[-1].encode()) == 1 | |
| ): | |
| new_mini_sentence_out = new_mini_sentence + "." | |
| new_mini_sentence_punc_out = new_mini_sentence_punc[:-1] + [ | |
| self.sentence_end_id | |
| ] | |
| if len(punctuations): | |
| punctuations[-1] = 2 | |
| # keep a punctuations array for punc segment | |
| if punc_array is None: | |
| punc_array = punctuations | |
| else: | |
| punc_array = torch.cat([punc_array, punctuations], dim=0) | |
| result_i = { | |
| "key": key[0], | |
| "text": new_mini_sentence_out, | |
| "punc_array": punc_array, | |
| } | |
| results.append(result_i) | |
| return results, meta_data | |