Spaces:
Running
on
Zero
Running
on
Zero
| import math | |
| import torch | |
| import torch.nn.functional as F | |
| from torch import nn | |
| class MultiHeadSelfAttention(nn.Module): | |
| def __init__(self, n_units, h=8, dropout_rate=0.1): | |
| super().__init__() | |
| self.linearQ = nn.Linear(n_units, n_units) | |
| self.linearK = nn.Linear(n_units, n_units) | |
| self.linearV = nn.Linear(n_units, n_units) | |
| self.linearO = nn.Linear(n_units, n_units) | |
| self.d_k = n_units // h | |
| self.h = h | |
| self.dropout = nn.Dropout(dropout_rate) | |
| def __call__(self, x, batch_size, x_mask): | |
| q = self.linearQ(x).view(batch_size, -1, self.h, self.d_k) | |
| k = self.linearK(x).view(batch_size, -1, self.h, self.d_k) | |
| v = self.linearV(x).view(batch_size, -1, self.h, self.d_k) | |
| scores = torch.matmul(q.permute(0, 2, 1, 3), k.permute(0, 2, 3, 1)) / math.sqrt( | |
| self.d_k | |
| ) | |
| if x_mask is not None: | |
| x_mask = x_mask.unsqueeze(1) | |
| scores = scores.masked_fill(x_mask == 0, -1e9) | |
| self.att = F.softmax(scores, dim=3) | |
| p_att = self.dropout(self.att) | |
| x = torch.matmul(p_att, v.permute(0, 2, 1, 3)) | |
| x = x.permute(0, 2, 1, 3).contiguous().view(-1, self.h * self.d_k) | |
| return self.linearO(x) | |
| class PositionwiseFeedForward(nn.Module): | |
| def __init__(self, n_units, d_units, dropout_rate): | |
| super(PositionwiseFeedForward, self).__init__() | |
| self.linear1 = nn.Linear(n_units, d_units) | |
| self.linear2 = nn.Linear(d_units, n_units) | |
| self.dropout = nn.Dropout(dropout_rate) | |
| def __call__(self, x): | |
| return self.linear2(self.dropout(F.relu(self.linear1(x)))) | |
| class PositionalEncoding(torch.nn.Module): | |
| def __init__(self, d_model, dropout_rate, max_len=5000, reverse=False): | |
| super(PositionalEncoding, self).__init__() | |
| self.d_model = d_model | |
| self.reverse = reverse | |
| self.xscale = math.sqrt(self.d_model) | |
| self.dropout = torch.nn.Dropout(p=dropout_rate) | |
| self.pe = None | |
| self.extend_pe(torch.tensor(0.0).expand(1, max_len)) | |
| def extend_pe(self, x): | |
| if self.pe is not None: | |
| if self.pe.size(1) >= x.size(1): | |
| if self.pe.dtype != x.dtype or self.pe.device != x.device: | |
| self.pe = self.pe.to(dtype=x.dtype, device=x.device) | |
| return | |
| pe = torch.zeros(x.size(1), self.d_model) | |
| if self.reverse: | |
| position = torch.arange( | |
| x.size(1) - 1, -1, -1.0, dtype=torch.float32 | |
| ).unsqueeze(1) | |
| else: | |
| position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1) | |
| div_term = torch.exp( | |
| torch.arange(0, self.d_model, 2, dtype=torch.float32) | |
| * -(math.log(10000.0) / self.d_model) | |
| ) | |
| pe[:, 0::2] = torch.sin(position * div_term) | |
| pe[:, 1::2] = torch.cos(position * div_term) | |
| pe = pe.unsqueeze(0) | |
| self.pe = pe.to(device=x.device, dtype=x.dtype) | |
| def forward(self, x: torch.Tensor): | |
| self.extend_pe(x) | |
| x = x * self.xscale + self.pe[:, : x.size(1)] | |
| return self.dropout(x) | |
| class EENDOLATransformerEncoder(nn.Module): | |
| def __init__( | |
| self, | |
| idim: int, | |
| n_layers: int, | |
| n_units: int, | |
| e_units: int = 2048, | |
| h: int = 4, | |
| dropout_rate: float = 0.1, | |
| use_pos_emb: bool = False, | |
| ): | |
| super(EENDOLATransformerEncoder, self).__init__() | |
| self.linear_in = nn.Linear(idim, n_units) | |
| self.lnorm_in = nn.LayerNorm(n_units) | |
| self.n_layers = n_layers | |
| self.dropout = nn.Dropout(dropout_rate) | |
| for i in range(n_layers): | |
| setattr(self, "{}{:d}".format("lnorm1_", i), nn.LayerNorm(n_units)) | |
| setattr( | |
| self, | |
| "{}{:d}".format("self_att_", i), | |
| MultiHeadSelfAttention(n_units, h), | |
| ) | |
| setattr(self, "{}{:d}".format("lnorm2_", i), nn.LayerNorm(n_units)) | |
| setattr( | |
| self, | |
| "{}{:d}".format("ff_", i), | |
| PositionwiseFeedForward(n_units, e_units, dropout_rate), | |
| ) | |
| self.lnorm_out = nn.LayerNorm(n_units) | |
| def __call__(self, x, x_mask=None): | |
| BT_size = x.shape[0] * x.shape[1] | |
| e = self.linear_in(x.reshape(BT_size, -1)) | |
| for i in range(self.n_layers): | |
| e = getattr(self, "{}{:d}".format("lnorm1_", i))(e) | |
| s = getattr(self, "{}{:d}".format("self_att_", i))(e, x.shape[0], x_mask) | |
| e = e + self.dropout(s) | |
| e = getattr(self, "{}{:d}".format("lnorm2_", i))(e) | |
| s = getattr(self, "{}{:d}".format("ff_", i))(e) | |
| e = e + self.dropout(s) | |
| return self.lnorm_out(e) | |