Spaces:
Running
on
Zero
Running
on
Zero
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| from torch import nn | |
| class EncoderDecoderAttractor(nn.Module): | |
| def __init__(self, n_units, encoder_dropout=0.1, decoder_dropout=0.1): | |
| super(EncoderDecoderAttractor, self).__init__() | |
| self.enc0_dropout = nn.Dropout(encoder_dropout) | |
| self.encoder = nn.LSTM( | |
| n_units, n_units, 1, batch_first=True, dropout=encoder_dropout | |
| ) | |
| self.dec0_dropout = nn.Dropout(decoder_dropout) | |
| self.decoder = nn.LSTM( | |
| n_units, n_units, 1, batch_first=True, dropout=decoder_dropout | |
| ) | |
| self.counter = nn.Linear(n_units, 1) | |
| self.n_units = n_units | |
| def forward_core(self, xs, zeros): | |
| ilens = torch.from_numpy(np.array([x.shape[0] for x in xs])).to(torch.int64) | |
| xs = [self.enc0_dropout(x) for x in xs] | |
| xs = nn.utils.rnn.pad_sequence(xs, batch_first=True, padding_value=-1) | |
| xs = nn.utils.rnn.pack_padded_sequence( | |
| xs, ilens, batch_first=True, enforce_sorted=False | |
| ) | |
| _, (hx, cx) = self.encoder(xs) | |
| zlens = torch.from_numpy(np.array([z.shape[0] for z in zeros])).to(torch.int64) | |
| max_zlen = torch.max(zlens).to(torch.int).item() | |
| zeros = [self.enc0_dropout(z) for z in zeros] | |
| zeros = nn.utils.rnn.pad_sequence(zeros, batch_first=True, padding_value=-1) | |
| zeros = nn.utils.rnn.pack_padded_sequence( | |
| zeros, zlens, batch_first=True, enforce_sorted=False | |
| ) | |
| attractors, (_, _) = self.decoder(zeros, (hx, cx)) | |
| attractors = nn.utils.rnn.pad_packed_sequence( | |
| attractors, batch_first=True, padding_value=-1, total_length=max_zlen | |
| )[0] | |
| attractors = [ | |
| att[: zlens[i].to(torch.int).item()] for i, att in enumerate(attractors) | |
| ] | |
| return attractors | |
| def forward(self, xs, n_speakers): | |
| zeros = [ | |
| torch.zeros(n_spk + 1, self.n_units).to(torch.float32).to(xs[0].device) | |
| for n_spk in n_speakers | |
| ] | |
| attractors = self.forward_core(xs, zeros) | |
| labels = torch.cat( | |
| [ | |
| torch.from_numpy(np.array([[1] * n_spk + [0]], np.float32)) | |
| for n_spk in n_speakers | |
| ], | |
| dim=1, | |
| ) | |
| labels = labels.to(xs[0].device) | |
| logit = torch.cat( | |
| [ | |
| self.counter(att).view(-1, n_spk + 1) | |
| for att, n_spk in zip(attractors, n_speakers) | |
| ], | |
| dim=1, | |
| ) | |
| loss = F.binary_cross_entropy(torch.sigmoid(logit), labels) | |
| attractors = [att[slice(0, att.shape[0] - 1)] for att in attractors] | |
| return loss, attractors | |
| def estimate(self, xs, max_n_speakers=15): | |
| zeros = [ | |
| torch.zeros(max_n_speakers, self.n_units).to(torch.float32).to(xs[0].device) | |
| for _ in xs | |
| ] | |
| attractors = self.forward_core(xs, zeros) | |
| probs = [torch.sigmoid(torch.flatten(self.counter(att))) for att in attractors] | |
| return attractors, probs | |