Spaces:
Running
on
Zero
Running
on
Zero
| from typing import List | |
| from typing import Optional | |
| from typing import Sequence | |
| from typing import Tuple | |
| from typing import Union | |
| import logging | |
| import torch | |
| import torch.nn as nn | |
| from torch.nn import functional as F | |
| import numpy as np | |
| from funasr_detach.models.transformer.utils.nets_utils import make_pad_mask | |
| from funasr_detach.models.transformer.layer_norm import LayerNorm | |
| from funasr_detach.models.encoder.abs_encoder import AbsEncoder | |
| import math | |
| from funasr_detach.models.transformer.utils.repeat import repeat | |
| from funasr_detach.models.transformer.utils.multi_layer_conv import FsmnFeedForward | |
| class FsmnBlock(torch.nn.Module): | |
| def __init__( | |
| self, | |
| n_feat, | |
| dropout_rate, | |
| kernel_size, | |
| fsmn_shift=0, | |
| ): | |
| super().__init__() | |
| self.dropout = nn.Dropout(p=dropout_rate) | |
| self.fsmn_block = nn.Conv1d( | |
| n_feat, n_feat, kernel_size, stride=1, padding=0, groups=n_feat, bias=False | |
| ) | |
| # padding | |
| left_padding = (kernel_size - 1) // 2 | |
| if fsmn_shift > 0: | |
| left_padding = left_padding + fsmn_shift | |
| right_padding = kernel_size - 1 - left_padding | |
| self.pad_fn = nn.ConstantPad1d((left_padding, right_padding), 0.0) | |
| def forward(self, inputs, mask, mask_shfit_chunk=None): | |
| b, t, d = inputs.size() | |
| if mask is not None: | |
| mask = torch.reshape(mask, (b, -1, 1)) | |
| if mask_shfit_chunk is not None: | |
| mask = mask * mask_shfit_chunk | |
| inputs = inputs * mask | |
| x = inputs.transpose(1, 2) | |
| x = self.pad_fn(x) | |
| x = self.fsmn_block(x) | |
| x = x.transpose(1, 2) | |
| x = x + inputs | |
| x = self.dropout(x) | |
| return x * mask | |
| class EncoderLayer(torch.nn.Module): | |
| def __init__(self, in_size, size, feed_forward, fsmn_block, dropout_rate=0.0): | |
| super().__init__() | |
| self.in_size = in_size | |
| self.size = size | |
| self.ffn = feed_forward | |
| self.memory = fsmn_block | |
| self.dropout = nn.Dropout(dropout_rate) | |
| def forward( | |
| self, xs_pad: torch.Tensor, mask: torch.Tensor | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| # xs_pad in Batch, Time, Dim | |
| context = self.ffn(xs_pad)[0] | |
| memory = self.memory(context, mask) | |
| memory = self.dropout(memory) | |
| if self.in_size == self.size: | |
| return memory + xs_pad, mask | |
| return memory, mask | |
| class FsmnEncoder(AbsEncoder): | |
| """Encoder using Fsmn""" | |
| def __init__( | |
| self, | |
| in_units, | |
| filter_size, | |
| fsmn_num_layers, | |
| dnn_num_layers, | |
| num_memory_units=512, | |
| ffn_inner_dim=2048, | |
| dropout_rate=0.0, | |
| shift=0, | |
| position_encoder=None, | |
| sample_rate=1, | |
| out_units=None, | |
| tf2torch_tensor_name_prefix_torch="post_net", | |
| tf2torch_tensor_name_prefix_tf="EAND/post_net", | |
| ): | |
| """Initializes the parameters of the encoder. | |
| Args: | |
| filter_size: the total order of memory block | |
| fsmn_num_layers: The number of fsmn layers. | |
| dnn_num_layers: The number of dnn layers | |
| num_units: The number of memory units. | |
| ffn_inner_dim: The number of units of the inner linear transformation | |
| in the feed forward layer. | |
| dropout_rate: The probability to drop units from the outputs. | |
| shift: left padding, to control delay | |
| position_encoder: The :class:`opennmt.layers.position.PositionEncoder` to | |
| apply on inputs or ``None``. | |
| """ | |
| super(FsmnEncoder, self).__init__() | |
| self.in_units = in_units | |
| self.filter_size = filter_size | |
| self.fsmn_num_layers = fsmn_num_layers | |
| self.dnn_num_layers = dnn_num_layers | |
| self.num_memory_units = num_memory_units | |
| self.ffn_inner_dim = ffn_inner_dim | |
| self.dropout_rate = dropout_rate | |
| self.shift = shift | |
| if not isinstance(shift, list): | |
| self.shift = [shift for _ in range(self.fsmn_num_layers)] | |
| self.sample_rate = sample_rate | |
| if not isinstance(sample_rate, list): | |
| self.sample_rate = [sample_rate for _ in range(self.fsmn_num_layers)] | |
| self.position_encoder = position_encoder | |
| self.dropout = nn.Dropout(dropout_rate) | |
| self.out_units = out_units | |
| self.tf2torch_tensor_name_prefix_torch = tf2torch_tensor_name_prefix_torch | |
| self.tf2torch_tensor_name_prefix_tf = tf2torch_tensor_name_prefix_tf | |
| self.fsmn_layers = repeat( | |
| self.fsmn_num_layers, | |
| lambda lnum: EncoderLayer( | |
| in_units if lnum == 0 else num_memory_units, | |
| num_memory_units, | |
| FsmnFeedForward( | |
| in_units if lnum == 0 else num_memory_units, | |
| ffn_inner_dim, | |
| num_memory_units, | |
| 1, | |
| dropout_rate, | |
| ), | |
| FsmnBlock( | |
| num_memory_units, dropout_rate, filter_size, self.shift[lnum] | |
| ), | |
| ), | |
| ) | |
| self.dnn_layers = repeat( | |
| dnn_num_layers, | |
| lambda lnum: FsmnFeedForward( | |
| num_memory_units, | |
| ffn_inner_dim, | |
| num_memory_units, | |
| 1, | |
| dropout_rate, | |
| ), | |
| ) | |
| if out_units is not None: | |
| self.conv1d = nn.Conv1d(num_memory_units, out_units, 1, 1) | |
| def output_size(self) -> int: | |
| return self.num_memory_units | |
| def forward( | |
| self, | |
| xs_pad: torch.Tensor, | |
| ilens: torch.Tensor, | |
| prev_states: torch.Tensor = None, | |
| ) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]: | |
| inputs = xs_pad | |
| if self.position_encoder is not None: | |
| inputs = self.position_encoder(inputs) | |
| inputs = self.dropout(inputs) | |
| masks = (~make_pad_mask(ilens)[:, None, :]).to(xs_pad.device) | |
| inputs = self.fsmn_layers(inputs, masks)[0] | |
| inputs = self.dnn_layers(inputs)[0] | |
| if self.out_units is not None: | |
| inputs = self.conv1d(inputs.transpose(1, 2)).transpose(1, 2) | |
| return inputs, ilens, None | |
| def gen_tf2torch_map_dict(self): | |
| tensor_name_prefix_torch = self.tf2torch_tensor_name_prefix_torch | |
| tensor_name_prefix_tf = self.tf2torch_tensor_name_prefix_tf | |
| map_dict_local = { | |
| # torch: conv1d.weight in "out_channel in_channel kernel_size" | |
| # tf : conv1d.weight in "kernel_size in_channel out_channel" | |
| # torch: linear.weight in "out_channel in_channel" | |
| # tf : dense.weight in "in_channel out_channel" | |
| # for fsmn_layers | |
| "{}.fsmn_layers.layeridx.ffn.norm.bias".format(tensor_name_prefix_torch): { | |
| "name": "{}/fsmn_layer_layeridx/ffn/LayerNorm/beta".format( | |
| tensor_name_prefix_tf | |
| ), | |
| "squeeze": None, | |
| "transpose": None, | |
| }, | |
| "{}.fsmn_layers.layeridx.ffn.norm.weight".format( | |
| tensor_name_prefix_torch | |
| ): { | |
| "name": "{}/fsmn_layer_layeridx/ffn/LayerNorm/gamma".format( | |
| tensor_name_prefix_tf | |
| ), | |
| "squeeze": None, | |
| "transpose": None, | |
| }, | |
| "{}.fsmn_layers.layeridx.ffn.w_1.bias".format(tensor_name_prefix_torch): { | |
| "name": "{}/fsmn_layer_layeridx/ffn/conv1d/bias".format( | |
| tensor_name_prefix_tf | |
| ), | |
| "squeeze": None, | |
| "transpose": None, | |
| }, | |
| "{}.fsmn_layers.layeridx.ffn.w_1.weight".format(tensor_name_prefix_torch): { | |
| "name": "{}/fsmn_layer_layeridx/ffn/conv1d/kernel".format( | |
| tensor_name_prefix_tf | |
| ), | |
| "squeeze": None, | |
| "transpose": (2, 1, 0), | |
| }, | |
| "{}.fsmn_layers.layeridx.ffn.w_2.weight".format(tensor_name_prefix_torch): { | |
| "name": "{}/fsmn_layer_layeridx/ffn/conv1d_1/kernel".format( | |
| tensor_name_prefix_tf | |
| ), | |
| "squeeze": None, | |
| "transpose": (2, 1, 0), | |
| }, | |
| "{}.fsmn_layers.layeridx.memory.fsmn_block.weight".format( | |
| tensor_name_prefix_torch | |
| ): { | |
| "name": "{}/fsmn_layer_layeridx/memory/depth_conv_w".format( | |
| tensor_name_prefix_tf | |
| ), | |
| "squeeze": 0, | |
| "transpose": (1, 2, 0), | |
| }, # (1, 31, 512, 1) -> (31, 512, 1) -> (512, 1, 31) | |
| # for dnn_layers | |
| "{}.dnn_layers.layeridx.norm.bias".format(tensor_name_prefix_torch): { | |
| "name": "{}/dnn_layer_layeridx/LayerNorm/beta".format( | |
| tensor_name_prefix_tf | |
| ), | |
| "squeeze": None, | |
| "transpose": None, | |
| }, | |
| "{}.dnn_layers.layeridx.norm.weight".format(tensor_name_prefix_torch): { | |
| "name": "{}/dnn_layer_layeridx/LayerNorm/gamma".format( | |
| tensor_name_prefix_tf | |
| ), | |
| "squeeze": None, | |
| "transpose": None, | |
| }, | |
| "{}.dnn_layers.layeridx.w_1.bias".format(tensor_name_prefix_torch): { | |
| "name": "{}/dnn_layer_layeridx/conv1d/bias".format( | |
| tensor_name_prefix_tf | |
| ), | |
| "squeeze": None, | |
| "transpose": None, | |
| }, | |
| "{}.dnn_layers.layeridx.w_1.weight".format(tensor_name_prefix_torch): { | |
| "name": "{}/dnn_layer_layeridx/conv1d/kernel".format( | |
| tensor_name_prefix_tf | |
| ), | |
| "squeeze": None, | |
| "transpose": (2, 1, 0), | |
| }, | |
| "{}.dnn_layers.layeridx.w_2.weight".format(tensor_name_prefix_torch): { | |
| "name": "{}/dnn_layer_layeridx/conv1d_1/kernel".format( | |
| tensor_name_prefix_tf | |
| ), | |
| "squeeze": None, | |
| "transpose": (2, 1, 0), | |
| }, | |
| } | |
| if self.out_units is not None: | |
| # add output layer | |
| map_dict_local.update( | |
| { | |
| "{}.conv1d.weight".format(tensor_name_prefix_torch): { | |
| "name": "{}/conv1d/kernel".format(tensor_name_prefix_tf), | |
| "squeeze": None, | |
| "transpose": (2, 1, 0), | |
| }, | |
| "{}.conv1d.bias".format(tensor_name_prefix_torch): { | |
| "name": "{}/conv1d/bias".format(tensor_name_prefix_tf), | |
| "squeeze": None, | |
| "transpose": None, | |
| }, | |
| } | |
| ) | |
| return map_dict_local | |
| def convert_tf2torch( | |
| self, | |
| var_dict_tf, | |
| var_dict_torch, | |
| ): | |
| map_dict = self.gen_tf2torch_map_dict() | |
| var_dict_torch_update = dict() | |
| for name in sorted(var_dict_torch.keys(), reverse=False): | |
| if name.startswith(self.tf2torch_tensor_name_prefix_torch): | |
| # process special (first and last) layers | |
| if name in map_dict: | |
| name_tf = map_dict[name]["name"] | |
| data_tf = var_dict_tf[name_tf] | |
| if map_dict[name]["squeeze"] is not None: | |
| data_tf = np.squeeze(data_tf, axis=map_dict[name]["squeeze"]) | |
| if map_dict[name]["transpose"] is not None: | |
| data_tf = np.transpose(data_tf, map_dict[name]["transpose"]) | |
| data_tf = torch.from_numpy(data_tf).type(torch.float32).to("cpu") | |
| assert ( | |
| var_dict_torch[name].size() == data_tf.size() | |
| ), "{}, {}, {} != {}".format( | |
| name, name_tf, var_dict_torch[name].size(), data_tf.size() | |
| ) | |
| var_dict_torch_update[name] = data_tf | |
| logging.info( | |
| "torch tensor: {}, {}, loading from tf tensor: {}, {}".format( | |
| name, data_tf.size(), name_tf, var_dict_tf[name_tf].shape | |
| ) | |
| ) | |
| # process general layers | |
| else: | |
| # self.tf2torch_tensor_name_prefix_torch may include ".", solve this case | |
| names = name.replace( | |
| self.tf2torch_tensor_name_prefix_torch, "todo" | |
| ).split(".") | |
| layeridx = int(names[2]) | |
| name_q = name.replace(".{}.".format(layeridx), ".layeridx.") | |
| if name_q in map_dict.keys(): | |
| name_v = map_dict[name_q]["name"] | |
| name_tf = name_v.replace("layeridx", "{}".format(layeridx)) | |
| data_tf = var_dict_tf[name_tf] | |
| if map_dict[name_q]["squeeze"] is not None: | |
| data_tf = np.squeeze( | |
| data_tf, axis=map_dict[name_q]["squeeze"] | |
| ) | |
| if map_dict[name_q]["transpose"] is not None: | |
| data_tf = np.transpose( | |
| data_tf, map_dict[name_q]["transpose"] | |
| ) | |
| data_tf = ( | |
| torch.from_numpy(data_tf).type(torch.float32).to("cpu") | |
| ) | |
| assert ( | |
| var_dict_torch[name].size() == data_tf.size() | |
| ), "{}, {}, {} != {}".format( | |
| name, name_tf, var_dict_torch[name].size(), data_tf.size() | |
| ) | |
| var_dict_torch_update[name] = data_tf | |
| logging.info( | |
| "torch tensor: {}, {}, loading from tf tensor: {}, {}".format( | |
| name, | |
| data_tf.size(), | |
| name_tf, | |
| var_dict_tf[name_tf].shape, | |
| ) | |
| ) | |
| else: | |
| logging.warning("{} is missed from tf checkpoint".format(name)) | |
| return var_dict_torch_update | |