Spaces:
Running
on
Zero
Running
on
Zero
| #!/usr/bin/env python3 | |
| # -*- coding: utf-8 -*- | |
| # Copyright 2019 Shigeki Karita | |
| # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) | |
| """Positional Encoding Module.""" | |
| import math | |
| import torch | |
| import torch.nn.functional as F | |
| from torch import einsum | |
| def _pre_hook( | |
| state_dict, | |
| prefix, | |
| local_metadata, | |
| strict, | |
| missing_keys, | |
| unexpected_keys, | |
| error_msgs, | |
| ): | |
| """Perform pre-hook in load_state_dict for backward compatibility. | |
| Note: | |
| We saved self.pe until v.0.5.2 but we have omitted it later. | |
| Therefore, we remove the item "pe" from `state_dict` for backward compatibility. | |
| """ | |
| k = prefix + "pe" | |
| if k in state_dict: | |
| state_dict.pop(k) | |
| class PositionalEncoding(torch.nn.Module): | |
| """Positional encoding. | |
| Args: | |
| d_model (int): Embedding dimension. | |
| dropout_rate (float): Dropout rate. | |
| max_len (int): Maximum input length. | |
| reverse (bool): Whether to reverse the input position. Only for | |
| the class LegacyRelPositionalEncoding. We remove it in the current | |
| class RelPositionalEncoding. | |
| """ | |
| def __init__(self, d_model, dropout_rate, max_len=5000, reverse=False): | |
| """Construct an PositionalEncoding object.""" | |
| super(PositionalEncoding, self).__init__() | |
| self.d_model = d_model | |
| self.reverse = reverse | |
| self.xscale = math.sqrt(self.d_model) | |
| self.dropout = torch.nn.Dropout(p=dropout_rate) | |
| self.pe = None | |
| self.extend_pe(torch.tensor(0.0).expand(1, max_len)) | |
| self._register_load_state_dict_pre_hook(_pre_hook) | |
| def extend_pe(self, x): | |
| """Reset the positional encodings.""" | |
| if self.pe is not None: | |
| if self.pe.size(1) >= x.size(1): | |
| if self.pe.dtype != x.dtype or self.pe.device != x.device: | |
| self.pe = self.pe.to(dtype=x.dtype, device=x.device) | |
| return | |
| pe = torch.zeros(x.size(1), self.d_model) | |
| if self.reverse: | |
| position = torch.arange( | |
| x.size(1) - 1, -1, -1.0, dtype=torch.float32 | |
| ).unsqueeze(1) | |
| else: | |
| position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1) | |
| div_term = torch.exp( | |
| torch.arange(0, self.d_model, 2, dtype=torch.float32) | |
| * -(math.log(10000.0) / self.d_model) | |
| ) | |
| pe[:, 0::2] = torch.sin(position * div_term) | |
| pe[:, 1::2] = torch.cos(position * div_term) | |
| pe = pe.unsqueeze(0) | |
| self.pe = pe.to(device=x.device, dtype=x.dtype) | |
| def forward(self, x: torch.Tensor): | |
| """Add positional encoding. | |
| Args: | |
| x (torch.Tensor): Input tensor (batch, time, `*`). | |
| Returns: | |
| torch.Tensor: Encoded tensor (batch, time, `*`). | |
| """ | |
| self.extend_pe(x) | |
| x = x * self.xscale + self.pe[:, : x.size(1)] | |
| return self.dropout(x) | |
| class ScaledPositionalEncoding(PositionalEncoding): | |
| """Scaled positional encoding module. | |
| See Sec. 3.2 https://arxiv.org/abs/1809.08895 | |
| Args: | |
| d_model (int): Embedding dimension. | |
| dropout_rate (float): Dropout rate. | |
| max_len (int): Maximum input length. | |
| """ | |
| def __init__(self, d_model, dropout_rate, max_len=5000): | |
| """Initialize class.""" | |
| super().__init__(d_model=d_model, dropout_rate=dropout_rate, max_len=max_len) | |
| self.alpha = torch.nn.Parameter(torch.tensor(1.0)) | |
| def reset_parameters(self): | |
| """Reset parameters.""" | |
| self.alpha.data = torch.tensor(1.0) | |
| def forward(self, x): | |
| """Add positional encoding. | |
| Args: | |
| x (torch.Tensor): Input tensor (batch, time, `*`). | |
| Returns: | |
| torch.Tensor: Encoded tensor (batch, time, `*`). | |
| """ | |
| self.extend_pe(x) | |
| x = x + self.alpha * self.pe[:, : x.size(1)] | |
| return self.dropout(x) | |
| class LearnableFourierPosEnc(torch.nn.Module): | |
| """Learnable Fourier Features for Positional Encoding. | |
| See https://arxiv.org/pdf/2106.02795.pdf | |
| Args: | |
| d_model (int): Embedding dimension. | |
| dropout_rate (float): Dropout rate. | |
| max_len (int): Maximum input length. | |
| gamma (float): init parameter for the positional kernel variance | |
| see https://arxiv.org/pdf/2106.02795.pdf. | |
| apply_scaling (bool): Whether to scale the input before adding the pos encoding. | |
| hidden_dim (int): if not None, we modulate the pos encodings with | |
| an MLP whose hidden layer has hidden_dim neurons. | |
| """ | |
| def __init__( | |
| self, | |
| d_model, | |
| dropout_rate=0.0, | |
| max_len=5000, | |
| gamma=1.0, | |
| apply_scaling=False, | |
| hidden_dim=None, | |
| ): | |
| """Initialize class.""" | |
| super(LearnableFourierPosEnc, self).__init__() | |
| self.d_model = d_model | |
| if apply_scaling: | |
| self.xscale = math.sqrt(self.d_model) | |
| else: | |
| self.xscale = 1.0 | |
| self.dropout = torch.nn.Dropout(dropout_rate) | |
| self.max_len = max_len | |
| self.gamma = gamma | |
| if self.gamma is None: | |
| self.gamma = self.d_model // 2 | |
| assert ( | |
| d_model % 2 == 0 | |
| ), "d_model should be divisible by two in order to use this layer." | |
| self.w_r = torch.nn.Parameter(torch.empty(1, d_model // 2)) | |
| self._reset() # init the weights | |
| self.hidden_dim = hidden_dim | |
| if self.hidden_dim is not None: | |
| self.mlp = torch.nn.Sequential( | |
| torch.nn.Linear(d_model, hidden_dim), | |
| torch.nn.GELU(), | |
| torch.nn.Linear(hidden_dim, d_model), | |
| ) | |
| def _reset(self): | |
| self.w_r.data = torch.normal( | |
| 0, (1 / math.sqrt(self.gamma)), (1, self.d_model // 2) | |
| ) | |
| def extend_pe(self, x): | |
| """Reset the positional encodings.""" | |
| position_v = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1).to(x) | |
| cosine = torch.cos(torch.matmul(position_v, self.w_r)) | |
| sine = torch.sin(torch.matmul(position_v, self.w_r)) | |
| pos_enc = torch.cat((cosine, sine), -1) | |
| pos_enc /= math.sqrt(self.d_model) | |
| if self.hidden_dim is None: | |
| return pos_enc.unsqueeze(0) | |
| else: | |
| return self.mlp(pos_enc.unsqueeze(0)) | |
| def forward(self, x: torch.Tensor): | |
| """Add positional encoding. | |
| Args: | |
| x (torch.Tensor): Input tensor (batch, time, `*`). | |
| Returns: | |
| torch.Tensor: Encoded tensor (batch, time, `*`). | |
| """ | |
| pe = self.extend_pe(x) | |
| x = x * self.xscale + pe | |
| return self.dropout(x) | |
| class LegacyRelPositionalEncoding(PositionalEncoding): | |
| """Relative positional encoding module (old version). | |
| Details can be found in https://github.com/espnet/espnet/pull/2816. | |
| See : Appendix B in https://arxiv.org/abs/1901.02860 | |
| Args: | |
| d_model (int): Embedding dimension. | |
| dropout_rate (float): Dropout rate. | |
| max_len (int): Maximum input length. | |
| """ | |
| def __init__(self, d_model, dropout_rate, max_len=5000): | |
| """Initialize class.""" | |
| super().__init__( | |
| d_model=d_model, | |
| dropout_rate=dropout_rate, | |
| max_len=max_len, | |
| reverse=True, | |
| ) | |
| def forward(self, x): | |
| """Compute positional encoding. | |
| Args: | |
| x (torch.Tensor): Input tensor (batch, time, `*`). | |
| Returns: | |
| torch.Tensor: Encoded tensor (batch, time, `*`). | |
| torch.Tensor: Positional embedding tensor (1, time, `*`). | |
| """ | |
| self.extend_pe(x) | |
| x = x * self.xscale | |
| pos_emb = self.pe[:, : x.size(1)] | |
| return self.dropout(x), self.dropout(pos_emb) | |
| class RelPositionalEncoding(torch.nn.Module): | |
| """Relative positional encoding module (new implementation). | |
| Details can be found in https://github.com/espnet/espnet/pull/2816. | |
| See : Appendix B in https://arxiv.org/abs/1901.02860 | |
| Args: | |
| d_model (int): Embedding dimension. | |
| dropout_rate (float): Dropout rate. | |
| max_len (int): Maximum input length. | |
| """ | |
| def __init__(self, d_model, dropout_rate, max_len=5000): | |
| """Construct an PositionalEncoding object.""" | |
| super(RelPositionalEncoding, self).__init__() | |
| self.d_model = d_model | |
| self.xscale = math.sqrt(self.d_model) | |
| self.dropout = torch.nn.Dropout(p=dropout_rate) | |
| self.pe = None | |
| self.extend_pe(torch.tensor(0.0).expand(1, max_len)) | |
| def extend_pe(self, x): | |
| """Reset the positional encodings.""" | |
| if self.pe is not None: | |
| # self.pe contains both positive and negative parts | |
| # the length of self.pe is 2 * input_len - 1 | |
| if self.pe.size(1) >= x.size(1) * 2 - 1: | |
| if self.pe.dtype != x.dtype or self.pe.device != x.device: | |
| self.pe = self.pe.to(dtype=x.dtype, device=x.device) | |
| return | |
| # Suppose `i` means to the position of query vecotr and `j` means the | |
| # position of key vector. We use position relative positions when keys | |
| # are to the left (i>j) and negative relative positions otherwise (i<j). | |
| pe_positive = torch.zeros(x.size(1), self.d_model) | |
| pe_negative = torch.zeros(x.size(1), self.d_model) | |
| position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1) | |
| div_term = torch.exp( | |
| torch.arange(0, self.d_model, 2, dtype=torch.float32) | |
| * -(math.log(10000.0) / self.d_model) | |
| ) | |
| pe_positive[:, 0::2] = torch.sin(position * div_term) | |
| pe_positive[:, 1::2] = torch.cos(position * div_term) | |
| pe_negative[:, 0::2] = torch.sin(-1 * position * div_term) | |
| pe_negative[:, 1::2] = torch.cos(-1 * position * div_term) | |
| # Reserve the order of positive indices and concat both positive and | |
| # negative indices. This is used to support the shifting trick | |
| # as in https://arxiv.org/abs/1901.02860 | |
| pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0) | |
| pe_negative = pe_negative[1:].unsqueeze(0) | |
| pe = torch.cat([pe_positive, pe_negative], dim=1) | |
| self.pe = pe.to(device=x.device, dtype=x.dtype) | |
| def forward(self, x: torch.Tensor): | |
| """Add positional encoding. | |
| Args: | |
| x (torch.Tensor): Input tensor (batch, time, `*`). | |
| Returns: | |
| torch.Tensor: Encoded tensor (batch, time, `*`). | |
| """ | |
| self.extend_pe(x) | |
| x = x * self.xscale | |
| pos_emb = self.pe[ | |
| :, | |
| self.pe.size(1) // 2 - x.size(1) + 1 : self.pe.size(1) // 2 + x.size(1), | |
| ] | |
| return self.dropout(x), self.dropout(pos_emb) | |
| class StreamPositionalEncoding(torch.nn.Module): | |
| """Streaming Positional encoding. | |
| Args: | |
| d_model (int): Embedding dimension. | |
| dropout_rate (float): Dropout rate. | |
| max_len (int): Maximum input length. | |
| """ | |
| def __init__(self, d_model, dropout_rate, max_len=5000): | |
| """Construct an PositionalEncoding object.""" | |
| super(StreamPositionalEncoding, self).__init__() | |
| self.d_model = d_model | |
| self.xscale = math.sqrt(self.d_model) | |
| self.dropout = torch.nn.Dropout(p=dropout_rate) | |
| self.pe = None | |
| self.tmp = torch.tensor(0.0).expand(1, max_len) | |
| self.extend_pe(self.tmp.size(1), self.tmp.device, self.tmp.dtype) | |
| self._register_load_state_dict_pre_hook(_pre_hook) | |
| def extend_pe(self, length, device, dtype): | |
| """Reset the positional encodings.""" | |
| if self.pe is not None: | |
| if self.pe.size(1) >= length: | |
| if self.pe.dtype != dtype or self.pe.device != device: | |
| self.pe = self.pe.to(dtype=dtype, device=device) | |
| return | |
| pe = torch.zeros(length, self.d_model) | |
| position = torch.arange(0, length, dtype=torch.float32).unsqueeze(1) | |
| div_term = torch.exp( | |
| torch.arange(0, self.d_model, 2, dtype=torch.float32) | |
| * -(math.log(10000.0) / self.d_model) | |
| ) | |
| pe[:, 0::2] = torch.sin(position * div_term) | |
| pe[:, 1::2] = torch.cos(position * div_term) | |
| pe = pe.unsqueeze(0) | |
| self.pe = pe.to(device=device, dtype=dtype) | |
| def forward(self, x: torch.Tensor, start_idx: int = 0): | |
| """Add positional encoding. | |
| Args: | |
| x (torch.Tensor): Input tensor (batch, time, `*`). | |
| Returns: | |
| torch.Tensor: Encoded tensor (batch, time, `*`). | |
| """ | |
| self.extend_pe(x.size(1) + start_idx, x.device, x.dtype) | |
| x = x * self.xscale + self.pe[:, start_idx : start_idx + x.size(1)] | |
| return self.dropout(x) | |
| class SinusoidalPositionEncoder(torch.nn.Module): | |
| """ """ | |
| def __int__(self, d_model=80, dropout_rate=0.1): | |
| pass | |
| def encode( | |
| self, | |
| positions: torch.Tensor = None, | |
| depth: int = None, | |
| dtype: torch.dtype = torch.float32, | |
| ): | |
| batch_size = positions.size(0) | |
| positions = positions.type(dtype) | |
| device = positions.device | |
| log_timescale_increment = torch.log( | |
| torch.tensor([10000], dtype=dtype, device=device) | |
| ) / (depth / 2 - 1) | |
| inv_timescales = torch.exp( | |
| torch.arange(depth / 2, device=device).type(dtype) | |
| * (-log_timescale_increment) | |
| ) | |
| inv_timescales = torch.reshape(inv_timescales, [batch_size, -1]) | |
| scaled_time = torch.reshape(positions, [1, -1, 1]) * torch.reshape( | |
| inv_timescales, [1, 1, -1] | |
| ) | |
| encoding = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=2) | |
| return encoding.type(dtype) | |
| def forward(self, x): | |
| batch_size, timesteps, input_dim = x.size() | |
| positions = torch.arange(1, timesteps + 1, device=x.device)[None, :] | |
| position_encoding = self.encode(positions, input_dim, x.dtype).to(x.device) | |
| return x + position_encoding | |
| class StreamSinusoidalPositionEncoder(torch.nn.Module): | |
| """ """ | |
| def __int__(self, d_model=80, dropout_rate=0.1): | |
| pass | |
| def encode( | |
| self, | |
| positions: torch.Tensor = None, | |
| depth: int = None, | |
| dtype: torch.dtype = torch.float32, | |
| ): | |
| batch_size = positions.size(0) | |
| positions = positions.type(dtype) | |
| log_timescale_increment = torch.log(torch.tensor([10000], dtype=dtype)) / ( | |
| depth / 2 - 1 | |
| ) | |
| inv_timescales = torch.exp( | |
| torch.arange(depth / 2).type(dtype) * (-log_timescale_increment) | |
| ) | |
| inv_timescales = torch.reshape(inv_timescales, [batch_size, -1]) | |
| scaled_time = torch.reshape(positions, [1, -1, 1]) * torch.reshape( | |
| inv_timescales, [1, 1, -1] | |
| ) | |
| encoding = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=2) | |
| return encoding.type(dtype) | |
| def forward(self, x, cache=None): | |
| batch_size, timesteps, input_dim = x.size() | |
| start_idx = 0 | |
| if cache is not None: | |
| start_idx = cache["start_idx"] | |
| cache["start_idx"] += timesteps | |
| positions = torch.arange(1, timesteps + start_idx + 1)[None, :] | |
| position_encoding = self.encode(positions, input_dim, x.dtype).to(x.device) | |
| return x + position_encoding[:, start_idx : start_idx + timesteps] | |
| class StreamingRelPositionalEncoding(torch.nn.Module): | |
| """Relative positional encoding. | |
| Args: | |
| size: Module size. | |
| max_len: Maximum input length. | |
| dropout_rate: Dropout rate. | |
| """ | |
| def __init__( | |
| self, size: int, dropout_rate: float = 0.0, max_len: int = 5000 | |
| ) -> None: | |
| """Construct a RelativePositionalEncoding object.""" | |
| super().__init__() | |
| self.size = size | |
| self.pe = None | |
| self.dropout = torch.nn.Dropout(p=dropout_rate) | |
| self.extend_pe(torch.tensor(0.0).expand(1, max_len)) | |
| self._register_load_state_dict_pre_hook(_pre_hook) | |
| def extend_pe(self, x: torch.Tensor, left_context: int = 0) -> None: | |
| """Reset positional encoding. | |
| Args: | |
| x: Input sequences. (B, T, ?) | |
| left_context: Number of frames in left context. | |
| """ | |
| time1 = x.size(1) + left_context | |
| if self.pe is not None: | |
| if self.pe.size(1) >= time1 * 2 - 1: | |
| if self.pe.dtype != x.dtype or self.pe.device != x.device: | |
| self.pe = self.pe.to(device=x.device, dtype=x.dtype) | |
| return | |
| pe_positive = torch.zeros(time1, self.size) | |
| pe_negative = torch.zeros(time1, self.size) | |
| position = torch.arange(0, time1, dtype=torch.float32).unsqueeze(1) | |
| div_term = torch.exp( | |
| torch.arange(0, self.size, 2, dtype=torch.float32) | |
| * -(math.log(10000.0) / self.size) | |
| ) | |
| pe_positive[:, 0::2] = torch.sin(position * div_term) | |
| pe_positive[:, 1::2] = torch.cos(position * div_term) | |
| pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0) | |
| pe_negative[:, 0::2] = torch.sin(-1 * position * div_term) | |
| pe_negative[:, 1::2] = torch.cos(-1 * position * div_term) | |
| pe_negative = pe_negative[1:].unsqueeze(0) | |
| self.pe = torch.cat([pe_positive, pe_negative], dim=1).to( | |
| dtype=x.dtype, device=x.device | |
| ) | |
| def forward(self, x: torch.Tensor, left_context: int = 0) -> torch.Tensor: | |
| """Compute positional encoding. | |
| Args: | |
| x: Input sequences. (B, T, ?) | |
| left_context: Number of frames in left context. | |
| Returns: | |
| pos_enc: Positional embedding sequences. (B, 2 * (T - 1), ?) | |
| """ | |
| self.extend_pe(x, left_context=left_context) | |
| time1 = x.size(1) + left_context | |
| pos_enc = self.pe[ | |
| :, self.pe.size(1) // 2 - time1 + 1 : self.pe.size(1) // 2 + x.size(1) | |
| ] | |
| pos_enc = self.dropout(pos_enc) | |
| return pos_enc | |
| class ScaledSinuEmbedding(torch.nn.Module): | |
| def __init__(self, dim): | |
| super().__init__() | |
| self.scale = torch.nn.Parameter( | |
| torch.ones( | |
| 1, | |
| ) | |
| ) | |
| inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim)) | |
| self.register_buffer("inv_freq", inv_freq) | |
| def forward(self, x): | |
| n, device = x.shape[1], x.device | |
| t = torch.arange(n, device=device).type_as(self.inv_freq) | |
| sinu = einsum("i , j -> i j", t, self.inv_freq) | |
| emb = torch.cat((sinu.sin(), sinu.cos()), dim=-1) | |
| return emb * self.scale | |