Spaces:
Running
on
Zero
Running
on
Zero
| import logging | |
| from typing import Union, Dict, List, Tuple, Optional | |
| import time | |
| import torch | |
| import torch.nn as nn | |
| from torch.cuda.amp import autocast | |
| from funasr_detach.losses.label_smoothing_loss import LabelSmoothingLoss | |
| from funasr_detach.models.ctc.ctc import CTC | |
| from funasr_detach.models.transformer.utils.add_sos_eos import add_sos_eos | |
| from funasr_detach.metrics.compute_acc import th_accuracy | |
| # from funasr_detach.models.e2e_asr_common import ErrorCalculator | |
| from funasr_detach.train_utils.device_funcs import force_gatherable | |
| from funasr_detach.utils.load_utils import load_audio_text_image_video, extract_fbank | |
| from funasr_detach.utils import postprocess_utils | |
| from funasr_detach.utils.datadir_writer import DatadirWriter | |
| from funasr_detach.register import tables | |
| class Transformer(nn.Module): | |
| """CTC-attention hybrid Encoder-Decoder model""" | |
| def __init__( | |
| self, | |
| specaug: str = None, | |
| specaug_conf: dict = None, | |
| normalize: str = None, | |
| normalize_conf: dict = None, | |
| encoder: str = None, | |
| encoder_conf: dict = None, | |
| decoder: str = None, | |
| decoder_conf: dict = None, | |
| ctc: str = None, | |
| ctc_conf: dict = None, | |
| ctc_weight: float = 0.5, | |
| interctc_weight: float = 0.0, | |
| input_size: int = 80, | |
| vocab_size: int = -1, | |
| ignore_id: int = -1, | |
| blank_id: int = 0, | |
| sos: int = 1, | |
| eos: int = 2, | |
| lsm_weight: float = 0.0, | |
| length_normalized_loss: bool = False, | |
| report_cer: bool = True, | |
| report_wer: bool = True, | |
| sym_space: str = "<space>", | |
| sym_blank: str = "<blank>", | |
| # extract_feats_in_collect_stats: bool = True, | |
| share_embedding: bool = False, | |
| # preencoder: Optional[AbsPreEncoder] = None, | |
| # postencoder: Optional[AbsPostEncoder] = None, | |
| **kwargs, | |
| ): | |
| super().__init__() | |
| if specaug is not None: | |
| specaug_class = tables.specaug_classes.get(specaug) | |
| specaug = specaug_class(**specaug_conf) | |
| if normalize is not None: | |
| normalize_class = tables.normalize_classes.get(normalize) | |
| normalize = normalize_class(**normalize_conf) | |
| encoder_class = tables.encoder_classes.get(encoder) | |
| encoder = encoder_class(input_size=input_size, **encoder_conf) | |
| encoder_output_size = encoder.output_size() | |
| if decoder is not None: | |
| decoder_class = tables.decoder_classes.get(decoder) | |
| decoder = decoder_class( | |
| vocab_size=vocab_size, | |
| encoder_output_size=encoder_output_size, | |
| **decoder_conf, | |
| ) | |
| if ctc_weight > 0.0: | |
| if ctc_conf is None: | |
| ctc_conf = {} | |
| ctc = CTC( | |
| odim=vocab_size, encoder_output_size=encoder_output_size, **ctc_conf | |
| ) | |
| self.blank_id = blank_id | |
| self.sos = sos if sos is not None else vocab_size - 1 | |
| self.eos = eos if eos is not None else vocab_size - 1 | |
| self.vocab_size = vocab_size | |
| self.ignore_id = ignore_id | |
| self.ctc_weight = ctc_weight | |
| self.specaug = specaug | |
| self.normalize = normalize | |
| self.encoder = encoder | |
| if not hasattr(self.encoder, "interctc_use_conditioning"): | |
| self.encoder.interctc_use_conditioning = False | |
| if self.encoder.interctc_use_conditioning: | |
| self.encoder.conditioning_layer = torch.nn.Linear( | |
| vocab_size, self.encoder.output_size() | |
| ) | |
| self.interctc_weight = interctc_weight | |
| # self.error_calculator = None | |
| if ctc_weight == 1.0: | |
| self.decoder = None | |
| else: | |
| self.decoder = decoder | |
| self.criterion_att = LabelSmoothingLoss( | |
| size=vocab_size, | |
| padding_idx=ignore_id, | |
| smoothing=lsm_weight, | |
| normalize_length=length_normalized_loss, | |
| ) | |
| # | |
| # if report_cer or report_wer: | |
| # self.error_calculator = ErrorCalculator( | |
| # token_list, sym_space, sym_blank, report_cer, report_wer | |
| # ) | |
| # | |
| self.error_calculator = None | |
| if ctc_weight == 0.0: | |
| self.ctc = None | |
| else: | |
| self.ctc = ctc | |
| self.share_embedding = share_embedding | |
| if self.share_embedding: | |
| self.decoder.embed = None | |
| self.length_normalized_loss = length_normalized_loss | |
| self.beam_search = None | |
| def forward( | |
| self, | |
| speech: torch.Tensor, | |
| speech_lengths: torch.Tensor, | |
| text: torch.Tensor, | |
| text_lengths: torch.Tensor, | |
| **kwargs, | |
| ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]: | |
| """Encoder + Decoder + Calc loss | |
| Args: | |
| speech: (Batch, Length, ...) | |
| speech_lengths: (Batch, ) | |
| text: (Batch, Length) | |
| text_lengths: (Batch,) | |
| """ | |
| # import pdb; | |
| # pdb.set_trace() | |
| if len(text_lengths.size()) > 1: | |
| text_lengths = text_lengths[:, 0] | |
| if len(speech_lengths.size()) > 1: | |
| speech_lengths = speech_lengths[:, 0] | |
| batch_size = speech.shape[0] | |
| # 1. Encoder | |
| encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) | |
| intermediate_outs = None | |
| if isinstance(encoder_out, tuple): | |
| intermediate_outs = encoder_out[1] | |
| encoder_out = encoder_out[0] | |
| loss_att, acc_att, cer_att, wer_att = None, None, None, None | |
| loss_ctc, cer_ctc = None, None | |
| stats = dict() | |
| # decoder: CTC branch | |
| if self.ctc_weight != 0.0: | |
| loss_ctc, cer_ctc = self._calc_ctc_loss( | |
| encoder_out, encoder_out_lens, text, text_lengths | |
| ) | |
| # Collect CTC branch stats | |
| stats["loss_ctc"] = loss_ctc.detach() if loss_ctc is not None else None | |
| stats["cer_ctc"] = cer_ctc | |
| # Intermediate CTC (optional) | |
| loss_interctc = 0.0 | |
| if self.interctc_weight != 0.0 and intermediate_outs is not None: | |
| for layer_idx, intermediate_out in intermediate_outs: | |
| # we assume intermediate_out has the same length & padding | |
| # as those of encoder_out | |
| loss_ic, cer_ic = self._calc_ctc_loss( | |
| intermediate_out, encoder_out_lens, text, text_lengths | |
| ) | |
| loss_interctc = loss_interctc + loss_ic | |
| # Collect Intermedaite CTC stats | |
| stats["loss_interctc_layer{}".format(layer_idx)] = ( | |
| loss_ic.detach() if loss_ic is not None else None | |
| ) | |
| stats["cer_interctc_layer{}".format(layer_idx)] = cer_ic | |
| loss_interctc = loss_interctc / len(intermediate_outs) | |
| # calculate whole encoder loss | |
| loss_ctc = ( | |
| 1 - self.interctc_weight | |
| ) * loss_ctc + self.interctc_weight * loss_interctc | |
| # decoder: Attention decoder branch | |
| loss_att, acc_att, cer_att, wer_att = self._calc_att_loss( | |
| encoder_out, encoder_out_lens, text, text_lengths | |
| ) | |
| # 3. CTC-Att loss definition | |
| if self.ctc_weight == 0.0: | |
| loss = loss_att | |
| elif self.ctc_weight == 1.0: | |
| loss = loss_ctc | |
| else: | |
| loss = self.ctc_weight * loss_ctc + (1 - self.ctc_weight) * loss_att | |
| # Collect Attn branch stats | |
| stats["loss_att"] = loss_att.detach() if loss_att is not None else None | |
| stats["acc"] = acc_att | |
| stats["cer"] = cer_att | |
| stats["wer"] = wer_att | |
| # Collect total loss stats | |
| stats["loss"] = torch.clone(loss.detach()) | |
| # force_gatherable: to-device and to-tensor if scalar for DataParallel | |
| if self.length_normalized_loss: | |
| batch_size = int((text_lengths + 1).sum()) | |
| loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device) | |
| return loss, stats, weight | |
| def encode( | |
| self, | |
| speech: torch.Tensor, | |
| speech_lengths: torch.Tensor, | |
| **kwargs, | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| """Frontend + Encoder. Note that this method is used by asr_inference.py | |
| Args: | |
| speech: (Batch, Length, ...) | |
| speech_lengths: (Batch, ) | |
| ind: int | |
| """ | |
| with autocast(False): | |
| # Data augmentation | |
| if self.specaug is not None and self.training: | |
| speech, speech_lengths = self.specaug(speech, speech_lengths) | |
| # Normalization for feature: e.g. Global-CMVN, Utterance-CMVN | |
| if self.normalize is not None: | |
| speech, speech_lengths = self.normalize(speech, speech_lengths) | |
| # Forward encoder | |
| # feats: (Batch, Length, Dim) | |
| # -> encoder_out: (Batch, Length2, Dim2) | |
| if self.encoder.interctc_use_conditioning: | |
| encoder_out, encoder_out_lens, _ = self.encoder( | |
| speech, speech_lengths, ctc=self.ctc | |
| ) | |
| else: | |
| encoder_out, encoder_out_lens, _ = self.encoder(speech, speech_lengths) | |
| intermediate_outs = None | |
| if isinstance(encoder_out, tuple): | |
| intermediate_outs = encoder_out[1] | |
| encoder_out = encoder_out[0] | |
| if intermediate_outs is not None: | |
| return (encoder_out, intermediate_outs), encoder_out_lens | |
| return encoder_out, encoder_out_lens | |
| def _calc_att_loss( | |
| self, | |
| encoder_out: torch.Tensor, | |
| encoder_out_lens: torch.Tensor, | |
| ys_pad: torch.Tensor, | |
| ys_pad_lens: torch.Tensor, | |
| ): | |
| ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos, self.ignore_id) | |
| ys_in_lens = ys_pad_lens + 1 | |
| # 1. Forward decoder | |
| decoder_out, _ = self.decoder( | |
| encoder_out, encoder_out_lens, ys_in_pad, ys_in_lens | |
| ) | |
| # 2. Compute attention loss | |
| loss_att = self.criterion_att(decoder_out, ys_out_pad) | |
| acc_att = th_accuracy( | |
| decoder_out.view(-1, self.vocab_size), | |
| ys_out_pad, | |
| ignore_label=self.ignore_id, | |
| ) | |
| # Compute cer/wer using attention-decoder | |
| if self.training or self.error_calculator is None: | |
| cer_att, wer_att = None, None | |
| else: | |
| ys_hat = decoder_out.argmax(dim=-1) | |
| cer_att, wer_att = self.error_calculator(ys_hat.cpu(), ys_pad.cpu()) | |
| return loss_att, acc_att, cer_att, wer_att | |
| def _calc_ctc_loss( | |
| self, | |
| encoder_out: torch.Tensor, | |
| encoder_out_lens: torch.Tensor, | |
| ys_pad: torch.Tensor, | |
| ys_pad_lens: torch.Tensor, | |
| ): | |
| # Calc CTC loss | |
| loss_ctc = self.ctc(encoder_out, encoder_out_lens, ys_pad, ys_pad_lens) | |
| # Calc CER using CTC | |
| cer_ctc = None | |
| if not self.training and self.error_calculator is not None: | |
| ys_hat = self.ctc.argmax(encoder_out).data | |
| cer_ctc = self.error_calculator(ys_hat.cpu(), ys_pad.cpu(), is_ctc=True) | |
| return loss_ctc, cer_ctc | |
| def init_beam_search( | |
| self, | |
| **kwargs, | |
| ): | |
| from funasr_detach.models.transformer.search import BeamSearch | |
| from funasr_detach.models.transformer.scorers.ctc import CTCPrefixScorer | |
| from funasr_detach.models.transformer.scorers.length_bonus import LengthBonus | |
| # 1. Build ASR model | |
| scorers = {} | |
| if self.ctc != None: | |
| ctc = CTCPrefixScorer(ctc=self.ctc, eos=self.eos) | |
| scorers.update(ctc=ctc) | |
| token_list = kwargs.get("token_list") | |
| scorers.update( | |
| decoder=self.decoder, | |
| length_bonus=LengthBonus(len(token_list)), | |
| ) | |
| # 3. Build ngram model | |
| # ngram is not supported now | |
| ngram = None | |
| scorers["ngram"] = ngram | |
| weights = dict( | |
| decoder=1.0 - kwargs.get("decoding_ctc_weight", 0.5), | |
| ctc=kwargs.get("decoding_ctc_weight", 0.5), | |
| lm=kwargs.get("lm_weight", 0.0), | |
| ngram=kwargs.get("ngram_weight", 0.0), | |
| length_bonus=kwargs.get("penalty", 0.0), | |
| ) | |
| beam_search = BeamSearch( | |
| beam_size=kwargs.get("beam_size", 10), | |
| weights=weights, | |
| scorers=scorers, | |
| sos=self.sos, | |
| eos=self.eos, | |
| vocab_size=len(token_list), | |
| token_list=token_list, | |
| pre_beam_score_key=None if self.ctc_weight == 1.0 else "full", | |
| ) | |
| self.beam_search = beam_search | |
| def inference( | |
| self, | |
| data_in, | |
| data_lengths=None, | |
| key: list = None, | |
| tokenizer=None, | |
| frontend=None, | |
| **kwargs, | |
| ): | |
| if kwargs.get("batch_size", 1) > 1: | |
| raise NotImplementedError("batch decoding is not implemented") | |
| # init beamsearch | |
| if self.beam_search is None: | |
| logging.info("enable beam_search") | |
| self.init_beam_search(**kwargs) | |
| self.nbest = kwargs.get("nbest", 1) | |
| meta_data = {} | |
| if ( | |
| isinstance(data_in, torch.Tensor) | |
| and kwargs.get("data_type", "sound") == "fbank" | |
| ): # fbank | |
| speech, speech_lengths = data_in, data_lengths | |
| if len(speech.shape) < 3: | |
| speech = speech[None, :, :] | |
| if speech_lengths is None: | |
| speech_lengths = speech.shape[1] | |
| else: | |
| # extract fbank feats | |
| time1 = time.perf_counter() | |
| audio_sample_list = load_audio_text_image_video( | |
| data_in, | |
| fs=frontend.fs, | |
| audio_fs=kwargs.get("fs", 16000), | |
| data_type=kwargs.get("data_type", "sound"), | |
| tokenizer=tokenizer, | |
| ) | |
| time2 = time.perf_counter() | |
| meta_data["load_data"] = f"{time2 - time1:0.3f}" | |
| speech, speech_lengths = extract_fbank( | |
| audio_sample_list, | |
| data_type=kwargs.get("data_type", "sound"), | |
| frontend=frontend, | |
| ) | |
| time3 = time.perf_counter() | |
| meta_data["extract_feat"] = f"{time3 - time2:0.3f}" | |
| meta_data["batch_data_time"] = ( | |
| speech_lengths.sum().item() | |
| * frontend.frame_shift | |
| * frontend.lfr_n | |
| / 1000 | |
| ) | |
| speech = speech.to(device=kwargs["device"]) | |
| speech_lengths = speech_lengths.to(device=kwargs["device"]) | |
| # Encoder | |
| encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) | |
| if isinstance(encoder_out, tuple): | |
| encoder_out = encoder_out[0] | |
| # c. Passed the encoder result and the beam search | |
| nbest_hyps = self.beam_search( | |
| x=encoder_out[0], | |
| maxlenratio=kwargs.get("maxlenratio", 0.0), | |
| minlenratio=kwargs.get("minlenratio", 0.0), | |
| ) | |
| nbest_hyps = nbest_hyps[: self.nbest] | |
| results = [] | |
| b, n, d = encoder_out.size() | |
| for i in range(b): | |
| for nbest_idx, hyp in enumerate(nbest_hyps): | |
| ibest_writer = None | |
| if kwargs.get("output_dir") is not None: | |
| if not hasattr(self, "writer"): | |
| self.writer = DatadirWriter(kwargs.get("output_dir")) | |
| ibest_writer = self.writer[f"{nbest_idx + 1}best_recog"] | |
| # remove sos/eos and get results | |
| last_pos = -1 | |
| if isinstance(hyp.yseq, list): | |
| token_int = hyp.yseq[1:last_pos] | |
| else: | |
| token_int = hyp.yseq[1:last_pos].tolist() | |
| # remove blank symbol id, which is assumed to be 0 | |
| token_int = list( | |
| filter( | |
| lambda x: x != self.eos | |
| and x != self.sos | |
| and x != self.blank_id, | |
| token_int, | |
| ) | |
| ) | |
| # Change integer-ids to tokens | |
| token = tokenizer.ids2tokens(token_int) | |
| text = tokenizer.tokens2text(token) | |
| text_postprocessed, _ = postprocess_utils.sentence_postprocess(token) | |
| result_i = {"key": key[i], "token": token, "text": text_postprocessed} | |
| results.append(result_i) | |
| if ibest_writer is not None: | |
| ibest_writer["token"][key[i]] = " ".join(token) | |
| ibest_writer["text"][key[i]] = text_postprocessed | |
| return results, meta_data | |