Spaces:
Running
on
Zero
Running
on
Zero
| #!/usr/bin/env python3 | |
| # -*- coding: utf-8 -*- | |
| # Copyright 2019 Shigeki Karita | |
| # Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) | |
| """Subsampling layer definition.""" | |
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| from funasr_detach.models.transformer.embedding import PositionalEncoding | |
| import logging | |
| from funasr_detach.models.scama.utils import sequence_mask | |
| from funasr_detach.models.transformer.utils.nets_utils import ( | |
| sub_factor_to_params, | |
| pad_to_len, | |
| ) | |
| from typing import Optional, Tuple, Union | |
| import math | |
| class TooShortUttError(Exception): | |
| """Raised when the utt is too short for subsampling. | |
| Args: | |
| message (str): Message for error catch | |
| actual_size (int): the short size that cannot pass the subsampling | |
| limit (int): the limit size for subsampling | |
| """ | |
| def __init__(self, message, actual_size, limit): | |
| """Construct a TooShortUttError for error handler.""" | |
| super().__init__(message) | |
| self.actual_size = actual_size | |
| self.limit = limit | |
| def check_short_utt(ins, size): | |
| """Check if the utterance is too short for subsampling.""" | |
| if isinstance(ins, Conv2dSubsampling2) and size < 3: | |
| return True, 3 | |
| if isinstance(ins, Conv2dSubsampling) and size < 7: | |
| return True, 7 | |
| if isinstance(ins, Conv2dSubsampling6) and size < 11: | |
| return True, 11 | |
| if isinstance(ins, Conv2dSubsampling8) and size < 15: | |
| return True, 15 | |
| return False, -1 | |
| class Conv2dSubsampling(torch.nn.Module): | |
| """Convolutional 2D subsampling (to 1/4 length). | |
| Args: | |
| idim (int): Input dimension. | |
| odim (int): Output dimension. | |
| dropout_rate (float): Dropout rate. | |
| pos_enc (torch.nn.Module): Custom position encoding layer. | |
| """ | |
| def __init__(self, idim, odim, dropout_rate, pos_enc=None): | |
| """Construct an Conv2dSubsampling object.""" | |
| super(Conv2dSubsampling, self).__init__() | |
| self.conv = torch.nn.Sequential( | |
| torch.nn.Conv2d(1, odim, 3, 2), | |
| torch.nn.ReLU(), | |
| torch.nn.Conv2d(odim, odim, 3, 2), | |
| torch.nn.ReLU(), | |
| ) | |
| self.out = torch.nn.Sequential( | |
| torch.nn.Linear(odim * (((idim - 1) // 2 - 1) // 2), odim), | |
| pos_enc if pos_enc is not None else PositionalEncoding(odim, dropout_rate), | |
| ) | |
| def forward(self, x, x_mask): | |
| """Subsample x. | |
| Args: | |
| x (torch.Tensor): Input tensor (#batch, time, idim). | |
| x_mask (torch.Tensor): Input mask (#batch, 1, time). | |
| Returns: | |
| torch.Tensor: Subsampled tensor (#batch, time', odim), | |
| where time' = time // 4. | |
| torch.Tensor: Subsampled mask (#batch, 1, time'), | |
| where time' = time // 4. | |
| """ | |
| x = x.unsqueeze(1) # (b, c, t, f) | |
| x = self.conv(x) | |
| b, c, t, f = x.size() | |
| x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f)) | |
| if x_mask is None: | |
| return x, None | |
| return x, x_mask[:, :, :-2:2][:, :, :-2:2] | |
| def __getitem__(self, key): | |
| """Get item. | |
| When reset_parameters() is called, if use_scaled_pos_enc is used, | |
| return the positioning encoding. | |
| """ | |
| if key != -1: | |
| raise NotImplementedError("Support only `-1` (for `reset_parameters`).") | |
| return self.out[key] | |
| class Conv2dSubsamplingPad(torch.nn.Module): | |
| """Convolutional 2D subsampling (to 1/4 length). | |
| Args: | |
| idim (int): Input dimension. | |
| odim (int): Output dimension. | |
| dropout_rate (float): Dropout rate. | |
| pos_enc (torch.nn.Module): Custom position encoding layer. | |
| """ | |
| def __init__(self, idim, odim, dropout_rate, pos_enc=None): | |
| """Construct an Conv2dSubsampling object.""" | |
| super(Conv2dSubsamplingPad, self).__init__() | |
| self.conv = torch.nn.Sequential( | |
| torch.nn.Conv2d(1, odim, 3, 2, padding=(0, 0)), | |
| torch.nn.ReLU(), | |
| torch.nn.Conv2d(odim, odim, 3, 2, padding=(0, 0)), | |
| torch.nn.ReLU(), | |
| ) | |
| self.out = torch.nn.Sequential( | |
| torch.nn.Linear(odim * (((idim - 1) // 2 - 1) // 2), odim), | |
| pos_enc if pos_enc is not None else PositionalEncoding(odim, dropout_rate), | |
| ) | |
| self.pad_fn = torch.nn.ConstantPad1d((0, 4), 0.0) | |
| def forward(self, x, x_mask): | |
| """Subsample x. | |
| Args: | |
| x (torch.Tensor): Input tensor (#batch, time, idim). | |
| x_mask (torch.Tensor): Input mask (#batch, 1, time). | |
| Returns: | |
| torch.Tensor: Subsampled tensor (#batch, time', odim), | |
| where time' = time // 4. | |
| torch.Tensor: Subsampled mask (#batch, 1, time'), | |
| where time' = time // 4. | |
| """ | |
| x = x.transpose(1, 2) | |
| x = self.pad_fn(x) | |
| x = x.transpose(1, 2) | |
| x = x.unsqueeze(1) # (b, c, t, f) | |
| x = self.conv(x) | |
| b, c, t, f = x.size() | |
| x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f)) | |
| if x_mask is None: | |
| return x, None | |
| x_len = torch.sum(x_mask[:, 0, :], dim=-1) | |
| x_len = (x_len - 1) // 2 + 1 | |
| x_len = (x_len - 1) // 2 + 1 | |
| mask = sequence_mask(x_len, None, x_len.dtype, x[0].device) | |
| return x, mask[:, None, :] | |
| def __getitem__(self, key): | |
| """Get item. | |
| When reset_parameters() is called, if use_scaled_pos_enc is used, | |
| return the positioning encoding. | |
| """ | |
| if key != -1: | |
| raise NotImplementedError("Support only `-1` (for `reset_parameters`).") | |
| return self.out[key] | |
| class Conv2dSubsampling2(torch.nn.Module): | |
| """Convolutional 2D subsampling (to 1/2 length). | |
| Args: | |
| idim (int): Input dimension. | |
| odim (int): Output dimension. | |
| dropout_rate (float): Dropout rate. | |
| pos_enc (torch.nn.Module): Custom position encoding layer. | |
| """ | |
| def __init__(self, idim, odim, dropout_rate, pos_enc=None): | |
| """Construct an Conv2dSubsampling2 object.""" | |
| super(Conv2dSubsampling2, self).__init__() | |
| self.conv = torch.nn.Sequential( | |
| torch.nn.Conv2d(1, odim, 3, 2), | |
| torch.nn.ReLU(), | |
| torch.nn.Conv2d(odim, odim, 3, 1), | |
| torch.nn.ReLU(), | |
| ) | |
| self.out = torch.nn.Sequential( | |
| torch.nn.Linear(odim * (((idim - 1) // 2 - 2)), odim), | |
| pos_enc if pos_enc is not None else PositionalEncoding(odim, dropout_rate), | |
| ) | |
| def forward(self, x, x_mask): | |
| """Subsample x. | |
| Args: | |
| x (torch.Tensor): Input tensor (#batch, time, idim). | |
| x_mask (torch.Tensor): Input mask (#batch, 1, time). | |
| Returns: | |
| torch.Tensor: Subsampled tensor (#batch, time', odim), | |
| where time' = time // 2. | |
| torch.Tensor: Subsampled mask (#batch, 1, time'), | |
| where time' = time // 2. | |
| """ | |
| x = x.unsqueeze(1) # (b, c, t, f) | |
| x = self.conv(x) | |
| b, c, t, f = x.size() | |
| x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f)) | |
| if x_mask is None: | |
| return x, None | |
| return x, x_mask[:, :, :-2:2][:, :, :-2:1] | |
| def __getitem__(self, key): | |
| """Get item. | |
| When reset_parameters() is called, if use_scaled_pos_enc is used, | |
| return the positioning encoding. | |
| """ | |
| if key != -1: | |
| raise NotImplementedError("Support only `-1` (for `reset_parameters`).") | |
| return self.out[key] | |
| class Conv2dSubsampling6(torch.nn.Module): | |
| """Convolutional 2D subsampling (to 1/6 length). | |
| Args: | |
| idim (int): Input dimension. | |
| odim (int): Output dimension. | |
| dropout_rate (float): Dropout rate. | |
| pos_enc (torch.nn.Module): Custom position encoding layer. | |
| """ | |
| def __init__(self, idim, odim, dropout_rate, pos_enc=None): | |
| """Construct an Conv2dSubsampling6 object.""" | |
| super(Conv2dSubsampling6, self).__init__() | |
| self.conv = torch.nn.Sequential( | |
| torch.nn.Conv2d(1, odim, 3, 2), | |
| torch.nn.ReLU(), | |
| torch.nn.Conv2d(odim, odim, 5, 3), | |
| torch.nn.ReLU(), | |
| ) | |
| self.out = torch.nn.Sequential( | |
| torch.nn.Linear(odim * (((idim - 1) // 2 - 2) // 3), odim), | |
| pos_enc if pos_enc is not None else PositionalEncoding(odim, dropout_rate), | |
| ) | |
| def forward(self, x, x_mask): | |
| """Subsample x. | |
| Args: | |
| x (torch.Tensor): Input tensor (#batch, time, idim). | |
| x_mask (torch.Tensor): Input mask (#batch, 1, time). | |
| Returns: | |
| torch.Tensor: Subsampled tensor (#batch, time', odim), | |
| where time' = time // 6. | |
| torch.Tensor: Subsampled mask (#batch, 1, time'), | |
| where time' = time // 6. | |
| """ | |
| x = x.unsqueeze(1) # (b, c, t, f) | |
| x = self.conv(x) | |
| b, c, t, f = x.size() | |
| x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f)) | |
| if x_mask is None: | |
| return x, None | |
| return x, x_mask[:, :, :-2:2][:, :, :-4:3] | |
| class Conv2dSubsampling8(torch.nn.Module): | |
| """Convolutional 2D subsampling (to 1/8 length). | |
| Args: | |
| idim (int): Input dimension. | |
| odim (int): Output dimension. | |
| dropout_rate (float): Dropout rate. | |
| pos_enc (torch.nn.Module): Custom position encoding layer. | |
| """ | |
| def __init__(self, idim, odim, dropout_rate, pos_enc=None): | |
| """Construct an Conv2dSubsampling8 object.""" | |
| super(Conv2dSubsampling8, self).__init__() | |
| self.conv = torch.nn.Sequential( | |
| torch.nn.Conv2d(1, odim, 3, 2), | |
| torch.nn.ReLU(), | |
| torch.nn.Conv2d(odim, odim, 3, 2), | |
| torch.nn.ReLU(), | |
| torch.nn.Conv2d(odim, odim, 3, 2), | |
| torch.nn.ReLU(), | |
| ) | |
| self.out = torch.nn.Sequential( | |
| torch.nn.Linear(odim * ((((idim - 1) // 2 - 1) // 2 - 1) // 2), odim), | |
| pos_enc if pos_enc is not None else PositionalEncoding(odim, dropout_rate), | |
| ) | |
| def forward(self, x, x_mask): | |
| """Subsample x. | |
| Args: | |
| x (torch.Tensor): Input tensor (#batch, time, idim). | |
| x_mask (torch.Tensor): Input mask (#batch, 1, time). | |
| Returns: | |
| torch.Tensor: Subsampled tensor (#batch, time', odim), | |
| where time' = time // 8. | |
| torch.Tensor: Subsampled mask (#batch, 1, time'), | |
| where time' = time // 8. | |
| """ | |
| x = x.unsqueeze(1) # (b, c, t, f) | |
| x = self.conv(x) | |
| b, c, t, f = x.size() | |
| x = self.out(x.transpose(1, 2).contiguous().view(b, t, c * f)) | |
| if x_mask is None: | |
| return x, None | |
| return x, x_mask[:, :, :-2:2][:, :, :-2:2][:, :, :-2:2] | |
| class Conv1dSubsampling(torch.nn.Module): | |
| """Convolutional 1D subsampling (to 1/2 length). | |
| Args: | |
| idim (int): Input dimension. | |
| odim (int): Output dimension. | |
| dropout_rate (float): Dropout rate. | |
| pos_enc (torch.nn.Module): Custom position encoding layer. | |
| """ | |
| def __init__( | |
| self, | |
| idim, | |
| odim, | |
| kernel_size, | |
| stride, | |
| pad, | |
| tf2torch_tensor_name_prefix_torch: str = "stride_conv", | |
| tf2torch_tensor_name_prefix_tf: str = "seq2seq/proj_encoder/downsampling", | |
| ): | |
| super(Conv1dSubsampling, self).__init__() | |
| self.conv = torch.nn.Conv1d(idim, odim, kernel_size, stride) | |
| self.pad_fn = torch.nn.ConstantPad1d(pad, 0.0) | |
| self.stride = stride | |
| self.odim = odim | |
| self.tf2torch_tensor_name_prefix_torch = tf2torch_tensor_name_prefix_torch | |
| self.tf2torch_tensor_name_prefix_tf = tf2torch_tensor_name_prefix_tf | |
| def output_size(self) -> int: | |
| return self.odim | |
| def forward(self, x, x_len): | |
| """Subsample x.""" | |
| x = x.transpose(1, 2) # (b, d ,t) | |
| x = self.pad_fn(x) | |
| # x = F.relu(self.conv(x)) | |
| x = F.leaky_relu(self.conv(x), negative_slope=0.0) | |
| x = x.transpose(1, 2) # (b, t ,d) | |
| if x_len is None: | |
| return x, None | |
| x_len = (x_len - 1) // self.stride + 1 | |
| return x, x_len | |
| def gen_tf2torch_map_dict(self): | |
| tensor_name_prefix_torch = self.tf2torch_tensor_name_prefix_torch | |
| tensor_name_prefix_tf = self.tf2torch_tensor_name_prefix_tf | |
| map_dict_local = { | |
| ## predictor | |
| "{}.conv.weight".format(tensor_name_prefix_torch): { | |
| "name": "{}/conv1d/kernel".format(tensor_name_prefix_tf), | |
| "squeeze": None, | |
| "transpose": (2, 1, 0), | |
| }, # (256,256,3),(3,256,256) | |
| "{}.conv.bias".format(tensor_name_prefix_torch): { | |
| "name": "{}/conv1d/bias".format(tensor_name_prefix_tf), | |
| "squeeze": None, | |
| "transpose": None, | |
| }, # (256,),(256,) | |
| } | |
| return map_dict_local | |
| def convert_tf2torch( | |
| self, | |
| var_dict_tf, | |
| var_dict_torch, | |
| ): | |
| map_dict = self.gen_tf2torch_map_dict() | |
| var_dict_torch_update = dict() | |
| for name in sorted(var_dict_torch.keys(), reverse=False): | |
| names = name.split(".") | |
| if names[0] == self.tf2torch_tensor_name_prefix_torch: | |
| name_tf = map_dict[name]["name"] | |
| data_tf = var_dict_tf[name_tf] | |
| if map_dict[name]["squeeze"] is not None: | |
| data_tf = np.squeeze(data_tf, axis=map_dict[name]["squeeze"]) | |
| if map_dict[name]["transpose"] is not None: | |
| data_tf = np.transpose(data_tf, map_dict[name]["transpose"]) | |
| data_tf = torch.from_numpy(data_tf).type(torch.float32).to("cpu") | |
| var_dict_torch_update[name] = data_tf | |
| logging.info( | |
| "torch tensor: {}, {}, loading from tf tensor: {}, {}".format( | |
| name, data_tf.size(), name_tf, var_dict_tf[name_tf].shape | |
| ) | |
| ) | |
| return var_dict_torch_update | |
| class StreamingConvInput(torch.nn.Module): | |
| """Streaming ConvInput module definition. | |
| Args: | |
| input_size: Input size. | |
| conv_size: Convolution size. | |
| subsampling_factor: Subsampling factor. | |
| vgg_like: Whether to use a VGG-like network. | |
| output_size: Block output dimension. | |
| """ | |
| def __init__( | |
| self, | |
| input_size: int, | |
| conv_size: Union[int, Tuple], | |
| subsampling_factor: int = 4, | |
| vgg_like: bool = True, | |
| conv_kernel_size: int = 3, | |
| output_size: Optional[int] = None, | |
| ) -> None: | |
| """Construct a ConvInput object.""" | |
| super().__init__() | |
| if vgg_like: | |
| if subsampling_factor == 1: | |
| conv_size1, conv_size2 = conv_size | |
| self.conv = torch.nn.Sequential( | |
| torch.nn.Conv2d( | |
| 1, | |
| conv_size1, | |
| conv_kernel_size, | |
| stride=1, | |
| padding=(conv_kernel_size - 1) // 2, | |
| ), | |
| torch.nn.ReLU(), | |
| torch.nn.Conv2d( | |
| conv_size1, | |
| conv_size1, | |
| conv_kernel_size, | |
| stride=1, | |
| padding=(conv_kernel_size - 1) // 2, | |
| ), | |
| torch.nn.ReLU(), | |
| torch.nn.MaxPool2d((1, 2)), | |
| torch.nn.Conv2d( | |
| conv_size1, | |
| conv_size2, | |
| conv_kernel_size, | |
| stride=1, | |
| padding=(conv_kernel_size - 1) // 2, | |
| ), | |
| torch.nn.ReLU(), | |
| torch.nn.Conv2d( | |
| conv_size2, | |
| conv_size2, | |
| conv_kernel_size, | |
| stride=1, | |
| padding=(conv_kernel_size - 1) // 2, | |
| ), | |
| torch.nn.ReLU(), | |
| torch.nn.MaxPool2d((1, 2)), | |
| ) | |
| output_proj = conv_size2 * ((input_size // 2) // 2) | |
| self.subsampling_factor = 1 | |
| self.stride_1 = 1 | |
| self.create_new_mask = self.create_new_vgg_mask | |
| else: | |
| conv_size1, conv_size2 = conv_size | |
| kernel_1 = int(subsampling_factor / 2) | |
| self.conv = torch.nn.Sequential( | |
| torch.nn.Conv2d( | |
| 1, | |
| conv_size1, | |
| conv_kernel_size, | |
| stride=1, | |
| padding=(conv_kernel_size - 1) // 2, | |
| ), | |
| torch.nn.ReLU(), | |
| torch.nn.Conv2d( | |
| conv_size1, | |
| conv_size1, | |
| conv_kernel_size, | |
| stride=1, | |
| padding=(conv_kernel_size - 1) // 2, | |
| ), | |
| torch.nn.ReLU(), | |
| torch.nn.MaxPool2d((kernel_1, 2)), | |
| torch.nn.Conv2d( | |
| conv_size1, | |
| conv_size2, | |
| conv_kernel_size, | |
| stride=1, | |
| padding=(conv_kernel_size - 1) // 2, | |
| ), | |
| torch.nn.ReLU(), | |
| torch.nn.Conv2d( | |
| conv_size2, | |
| conv_size2, | |
| conv_kernel_size, | |
| stride=1, | |
| padding=(conv_kernel_size - 1) // 2, | |
| ), | |
| torch.nn.ReLU(), | |
| torch.nn.MaxPool2d((2, 2)), | |
| ) | |
| output_proj = conv_size2 * ((input_size // 2) // 2) | |
| self.subsampling_factor = subsampling_factor | |
| self.create_new_mask = self.create_new_vgg_mask | |
| self.stride_1 = kernel_1 | |
| else: | |
| if subsampling_factor == 1: | |
| self.conv = torch.nn.Sequential( | |
| torch.nn.Conv2d(1, conv_size, 3, [1, 2], [1, 0]), | |
| torch.nn.ReLU(), | |
| torch.nn.Conv2d( | |
| conv_size, conv_size, conv_kernel_size, [1, 2], [1, 0] | |
| ), | |
| torch.nn.ReLU(), | |
| ) | |
| output_proj = conv_size * (((input_size - 1) // 2 - 1) // 2) | |
| self.subsampling_factor = subsampling_factor | |
| self.kernel_2 = conv_kernel_size | |
| self.stride_2 = 1 | |
| self.create_new_mask = self.create_new_conv2d_mask | |
| else: | |
| kernel_2, stride_2, conv_2_output_size = sub_factor_to_params( | |
| subsampling_factor, | |
| input_size, | |
| ) | |
| self.conv = torch.nn.Sequential( | |
| torch.nn.Conv2d(1, conv_size, 3, 2, [1, 0]), | |
| torch.nn.ReLU(), | |
| torch.nn.Conv2d( | |
| conv_size, | |
| conv_size, | |
| kernel_2, | |
| stride_2, | |
| [(kernel_2 - 1) // 2, 0], | |
| ), | |
| torch.nn.ReLU(), | |
| ) | |
| output_proj = conv_size * conv_2_output_size | |
| self.subsampling_factor = subsampling_factor | |
| self.kernel_2 = kernel_2 | |
| self.stride_2 = stride_2 | |
| self.create_new_mask = self.create_new_conv2d_mask | |
| self.vgg_like = vgg_like | |
| self.min_frame_length = 7 | |
| if output_size is not None: | |
| self.output = torch.nn.Linear(output_proj, output_size) | |
| self.output_size = output_size | |
| else: | |
| self.output = None | |
| self.output_size = output_proj | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| mask: Optional[torch.Tensor], | |
| chunk_size: Optional[torch.Tensor], | |
| ) -> Tuple[torch.Tensor, torch.Tensor]: | |
| """Encode input sequences. | |
| Args: | |
| x: ConvInput input sequences. (B, T, D_feats) | |
| mask: Mask of input sequences. (B, 1, T) | |
| Returns: | |
| x: ConvInput output sequences. (B, sub(T), D_out) | |
| mask: Mask of output sequences. (B, 1, sub(T)) | |
| """ | |
| if mask is not None: | |
| mask = self.create_new_mask(mask) | |
| olens = max(mask.eq(0).sum(1)) | |
| b, t, f = x.size() | |
| x = x.unsqueeze(1) # (b. 1. t. f) | |
| if chunk_size is not None: | |
| max_input_length = int( | |
| chunk_size | |
| * self.subsampling_factor | |
| * (math.ceil(float(t) / (chunk_size * self.subsampling_factor))) | |
| ) | |
| x = map(lambda inputs: pad_to_len(inputs, max_input_length, 1), x) | |
| x = list(x) | |
| x = torch.stack(x, dim=0) | |
| N_chunks = max_input_length // (chunk_size * self.subsampling_factor) | |
| x = x.view(b * N_chunks, 1, chunk_size * self.subsampling_factor, f) | |
| x = self.conv(x) | |
| _, c, _, f = x.size() | |
| if chunk_size is not None: | |
| x = x.transpose(1, 2).contiguous().view(b, -1, c * f)[:, :olens, :] | |
| else: | |
| x = x.transpose(1, 2).contiguous().view(b, -1, c * f) | |
| if self.output is not None: | |
| x = self.output(x) | |
| return x, mask[:, :olens][:, : x.size(1)] | |
| def create_new_vgg_mask(self, mask: torch.Tensor) -> torch.Tensor: | |
| """Create a new mask for VGG output sequences. | |
| Args: | |
| mask: Mask of input sequences. (B, T) | |
| Returns: | |
| mask: Mask of output sequences. (B, sub(T)) | |
| """ | |
| if self.subsampling_factor > 1: | |
| vgg1_t_len = mask.size(1) - (mask.size(1) % (self.subsampling_factor // 2)) | |
| mask = mask[:, :vgg1_t_len][:, :: self.subsampling_factor // 2] | |
| vgg2_t_len = mask.size(1) - (mask.size(1) % 2) | |
| mask = mask[:, :vgg2_t_len][:, ::2] | |
| else: | |
| mask = mask | |
| return mask | |
| def create_new_conv2d_mask(self, mask: torch.Tensor) -> torch.Tensor: | |
| """Create new conformer mask for Conv2d output sequences. | |
| Args: | |
| mask: Mask of input sequences. (B, T) | |
| Returns: | |
| mask: Mask of output sequences. (B, sub(T)) | |
| """ | |
| if self.subsampling_factor > 1: | |
| return mask[:, ::2][:, :: self.stride_2] | |
| else: | |
| return mask | |
| def get_size_before_subsampling(self, size: int) -> int: | |
| """Return the original size before subsampling for a given size. | |
| Args: | |
| size: Number of frames after subsampling. | |
| Returns: | |
| : Number of frames before subsampling. | |
| """ | |
| return size * self.subsampling_factor | |