Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import time | |
| import torch | |
| import logging | |
| from tqdm import tqdm | |
| from datetime import datetime | |
| import torch.distributed as dist | |
| from contextlib import nullcontext | |
| # from torch.utils.tensorboard import SummaryWriter | |
| from tensorboardX import SummaryWriter | |
| from pathlib import Path | |
| from funasr_detach.train_utils.device_funcs import to_device | |
| from funasr_detach.train_utils.recursive_op import recursive_average | |
| from funasr_detach.train_utils.average_nbest_models import average_checkpoints | |
| class Trainer: | |
| """ | |
| A simple trainer class for training a PyTorch model, saving checkpoints at the end of each epoch, | |
| and optionally resuming from a saved checkpoint. | |
| Attributes: | |
| max_epoch (int): Maximum number of epochs for training. | |
| model (torch.nn.Module): The model to be trained. | |
| optim (torch.optim.Optimizer): The optimizer to use for training. | |
| scheduler (torch.optim.lr_scheduler._LRScheduler): The learning rate scheduler. | |
| dataloader_train (torch.utils.data.DataLoader): DataLoader for the training dataset. | |
| dataloader_val (torch.utils.data.DataLoader): DataLoader for the validation dataset. | |
| output_dir (str): Directory where model checkpoints will be saved. | |
| resume (str, optional): Path to a checkpoint to resume training from. | |
| """ | |
| def __init__( | |
| self, | |
| model, | |
| optim, | |
| scheduler, | |
| dataloader_train, | |
| dataloader_val, | |
| local_rank, | |
| use_ddp=False, | |
| use_fsdp=False, | |
| output_dir: str = "./", | |
| **kwargs, | |
| ): | |
| """ | |
| Initializes the Trainer class with the model, optimizer, scheduler, dataloaders, and other settings. | |
| Args: | |
| model (torch.nn.Module): The model to be trained. | |
| optim (torch.optim.Optimizer): The optimizer to use for training. | |
| scheduler (torch.optim.lr_scheduler._LRScheduler): The learning rate scheduler. | |
| dataloader_train (torch.utils.data.DataLoader): The DataLoader for the training dataset. | |
| dataloader_val (torch.utils.data.DataLoader): The DataLoader for the validation dataset. | |
| **kwargs: Additional keyword arguments: | |
| max_epoch (int): The maximum number of epochs for training. | |
| output_dir (str): The directory where model checkpoints will be saved. Default is './'. | |
| resume (str, optional): The file path to a checkpoint to resume training from. | |
| """ | |
| self.model = model | |
| self.optim = optim | |
| self.scheduler = scheduler | |
| self.dataloader_train = dataloader_train | |
| self.dataloader_val = dataloader_val | |
| self.output_dir = output_dir | |
| self.resume = kwargs.get("resume", True) | |
| self.start_epoch = 0 | |
| self.max_epoch = kwargs.get("max_epoch", 100) | |
| self.local_rank = local_rank | |
| self.use_ddp = use_ddp | |
| self.use_fsdp = use_fsdp | |
| self.device = next(model.parameters()).device | |
| self.avg_nbest_model = kwargs.get("avg_nbest_model", 5) | |
| self.kwargs = kwargs | |
| self.log_interval = kwargs.get("log_interval", 50) | |
| self.batch_total = 0 | |
| try: | |
| rank = dist.get_rank() | |
| world_size = dist.get_world_size() | |
| except: | |
| rank = 0 | |
| world_size = 1 | |
| logging.warning("distributed is not initialized, only single shard") | |
| self.rank = rank | |
| self.world_size = world_size | |
| os.makedirs(os.path.join(self.output_dir, "tensorboard"), exist_ok=True) | |
| self.writer = ( | |
| SummaryWriter(os.path.join(self.output_dir, "tensorboard")) | |
| if rank == 0 | |
| else None | |
| ) | |
| def _save_checkpoint(self, epoch): | |
| """ | |
| Saves a checkpoint containing the model's state, the optimizer's state, | |
| and the scheduler's state at the end of the given epoch. This method is | |
| intended to be called at the end of each epoch to save the training progress. | |
| Args: | |
| epoch (int): The epoch number at which the checkpoint is being saved. | |
| """ | |
| state = { | |
| "epoch": epoch, | |
| "state_dict": self.model.state_dict(), | |
| "optimizer": self.optim.state_dict(), | |
| "scheduler": self.scheduler.state_dict(), | |
| } | |
| # Create output directory if it does not exist | |
| os.makedirs(self.output_dir, exist_ok=True) | |
| filename = os.path.join(self.output_dir, f"model.pt.ep{epoch}") | |
| torch.save(state, filename) | |
| print(f"\nCheckpoint saved to {filename}\n") | |
| latest = Path(os.path.join(self.output_dir, f"model.pt")) | |
| torch.save(state, latest) | |
| def _resume_checkpoint(self, resume_path): | |
| """ | |
| Resumes training from a checkpoint at the given file path. | |
| Loads the model's state, the optimizer's state, and the scheduler's state. | |
| Args: | |
| resume_path (str): The file path to the checkpoint to resume from. | |
| """ | |
| ckpt = os.path.join(resume_path, "model.pt") | |
| if os.path.isfile(ckpt): | |
| checkpoint = torch.load(ckpt) | |
| self.start_epoch = checkpoint["epoch"] + 1 | |
| # self.model.load_state_dict(checkpoint['state_dict']) | |
| src_state = checkpoint["state_dict"] | |
| dst_state = self.model.state_dict() | |
| for k in dst_state.keys(): | |
| if not k.startswith("module.") and "module." + k in src_state.keys(): | |
| k_ddp = "module." + k | |
| else: | |
| k_ddp = k | |
| if k_ddp in src_state.keys(): | |
| dst_state[k] = src_state[k_ddp] | |
| else: | |
| print(f"Miss key in ckpt: model: {k}, ckpt: {k_ddp}") | |
| self.model.load_state_dict(dst_state) | |
| self.optim.load_state_dict(checkpoint["optimizer"]) | |
| self.scheduler.load_state_dict(checkpoint["scheduler"]) | |
| print(f"Checkpoint loaded successfully from '{ckpt}'") | |
| else: | |
| print(f"No checkpoint found at '{ckpt}', starting from scratch") | |
| if self.use_ddp or self.use_fsdp: | |
| dist.barrier() | |
| def run(self): | |
| """ | |
| Starts the training process, iterating over epochs, training the model, | |
| and saving checkpoints at the end of each epoch. | |
| """ | |
| if self.resume: | |
| self._resume_checkpoint(self.output_dir) | |
| for epoch in range(self.start_epoch, self.max_epoch + 1): | |
| time1 = time.perf_counter() | |
| self._train_epoch(epoch) | |
| if self.use_ddp or self.use_fsdp: | |
| dist.barrier() | |
| self._validate_epoch(epoch) | |
| if self.use_ddp or self.use_fsdp: | |
| dist.barrier() | |
| if self.rank == 0: | |
| self._save_checkpoint(epoch) | |
| if self.use_ddp or self.use_fsdp: | |
| dist.barrier() | |
| self.scheduler.step() | |
| time2 = time.perf_counter() | |
| time_escaped = (time2 - time1) / 3600.0 | |
| print( | |
| f"\nrank: {self.local_rank}, time_escaped_epoch: {time_escaped:.3f} hours, estimated to finish {self.max_epoch} epoch: {(self.max_epoch-epoch)*time_escaped:.3f}\n" | |
| ) | |
| if self.rank == 0: | |
| average_checkpoints(self.output_dir, self.avg_nbest_model) | |
| if self.use_ddp or self.use_fsdp: | |
| dist.barrier() | |
| if self.writer: | |
| self.writer.close() | |
| def _train_epoch(self, epoch): | |
| """ | |
| Defines the training process for a single epoch with gradient accumulation. | |
| Args: | |
| epoch (int): The current epoch number. | |
| """ | |
| self.model.train() | |
| pbar = tqdm( | |
| colour="blue", | |
| desc=f"rank: {self.local_rank}, Training Epoch: {epoch + 1}", | |
| total=len(self.dataloader_train), | |
| dynamic_ncols=True, | |
| ) | |
| # Set the number of steps for gradient accumulation | |
| accum_grad = self.kwargs.get("accum_grad", 1) | |
| # Initialize the gradient accumulation | |
| self.optim.zero_grad() | |
| speed_stats = {} | |
| time5 = time.perf_counter() | |
| for batch_idx, batch in enumerate(self.dataloader_train): | |
| self.batch_total += 1 | |
| time1 = time.perf_counter() | |
| speed_stats["data_load"] = f"{time1-time5:0.3f}" | |
| batch = to_device(batch, self.device) | |
| my_context = ( | |
| self.model.no_sync if batch_idx % accum_grad != 0 else nullcontext | |
| ) | |
| with my_context(): | |
| time2 = time.perf_counter() | |
| retval = self.model(**batch) | |
| torch.cuda.empty_cache() | |
| time3 = time.perf_counter() | |
| speed_stats["forward_time"] = f"{time3 - time2:0.3f}" | |
| loss, stats, weight = retval | |
| stats = {k: v for k, v in stats.items() if v is not None} | |
| if self.use_ddp or self.use_fsdp: | |
| # Apply weighted averaging for loss and stats | |
| loss = (loss * weight.type(loss.dtype)).sum() | |
| # if distributed, this method can also apply all_reduce() | |
| stats, weight = recursive_average(stats, weight, distributed=True) | |
| # Now weight is summation over all workers | |
| loss /= weight | |
| # Multiply world_size because DistributedDataParallel | |
| # automatically normalizes the gradient by world_size. | |
| loss *= self.world_size | |
| # Scale the loss since we're not updating for every mini-batch | |
| loss = loss / accum_grad | |
| loss.backward() | |
| time4 = time.perf_counter() | |
| speed_stats["backward_time"] = f"{time4 - time3:0.3f}" | |
| # Perform an optimizer step only after accumulating enough gradients | |
| if (batch_idx + 1) % accum_grad == 0 or (batch_idx + 1) == len( | |
| self.dataloader_train | |
| ): | |
| # Perform gradient clipping if it is set | |
| if self.kwargs.get("grad_clip", None) is not None: | |
| grad_norm = torch.nn.utils.clip_grad_norm_( | |
| self.model.parameters(), | |
| max_norm=self.kwargs.get("grad_clip", 10.0), | |
| norm_type=self.kwargs.get("grad_clip_type", 2.0), | |
| ) | |
| if not torch.isfinite(grad_norm): | |
| logging.warning( | |
| f"The grad norm is {grad_norm}. Skipping updating the model." | |
| ) | |
| self.optim.zero_grad() # Reset gradients | |
| continue | |
| # Execute an optimization step (update model parameters) | |
| if self.use_ddp or self.use_fsdp: | |
| dist.barrier() | |
| self.optim.step() | |
| self.scheduler.step() | |
| # Clear gradients for the next accumulation stage | |
| self.optim.zero_grad() | |
| total_time = f"{time.perf_counter() - time5:0.3f}" | |
| time5 = time.perf_counter() | |
| speed_stats["optim_time"] = f"{time5 - time4:0.3f}" | |
| speed_stats["total_time"] = total_time | |
| if (batch_idx + 1) % self.log_interval == 0 or (batch_idx + 1) == len( | |
| self.dataloader_train | |
| ): | |
| pbar.update(self.log_interval) | |
| gpu_info = ( | |
| "GPU, memory: {:.3f} GB, " | |
| "{:.3f} GB, " | |
| "{:.3f} GB, " | |
| "{:.3f} GB".format( | |
| torch.cuda.memory_allocated() / 1024 / 1024 / 1024, | |
| torch.cuda.max_memory_allocated() / 1024 / 1024 / 1024, | |
| torch.cuda.memory_reserved() / 1024 / 1024 / 1024, | |
| torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, | |
| ) | |
| ) | |
| lr = self.scheduler.get_last_lr()[0] | |
| time_now = datetime.now() | |
| time_now = time_now.strftime("%Y-%m-%d %H:%M:%S") | |
| description = ( | |
| f"{time_now}, " | |
| f"rank: {self.local_rank}, " | |
| f"epoch: {epoch}/{self.max_epoch}, " | |
| f"step: {batch_idx+1}/{len(self.dataloader_train)}, total: {self.batch_total}, " | |
| f"(loss: {loss.detach().cpu().item():.3f}), " | |
| f"(lr: {lr:.3e}), " | |
| f"{[(k, round(v.cpu().item(), 3)) for k, v in stats.items()]}, " | |
| f"{speed_stats}, " | |
| f"{gpu_info}" | |
| ) | |
| pbar.set_description(description) | |
| if self.writer: | |
| self.writer.add_scalar( | |
| f"rank{self.local_rank}_Loss/train", | |
| loss.item(), | |
| self.batch_total, | |
| ) | |
| self.writer.add_scalar( | |
| f"rank{self.local_rank}_lr/train", lr, self.batch_total | |
| ) | |
| for key, var in stats.items(): | |
| self.writer.add_scalar( | |
| f"rank{self.local_rank}_{key}/train", | |
| var.item(), | |
| self.batch_total, | |
| ) | |
| for key, var in speed_stats.items(): | |
| self.writer.add_scalar( | |
| f"rank{self.local_rank}_{key}/train", | |
| eval(var), | |
| self.batch_total, | |
| ) | |
| pbar.close() | |
| def _validate_epoch(self, epoch): | |
| """ | |
| Defines the validation process for a single epoch. | |
| Should be implemented with the actual model validation steps. | |
| Args: | |
| epoch (int): The current epoch number. | |
| """ | |
| self.model.eval() | |
| with torch.no_grad(): | |
| pbar = tqdm( | |
| colour="red", | |
| desc=f"rank: {self.local_rank}, Validation Epoch: {epoch + 1}", | |
| total=len(self.dataloader_val), | |
| dynamic_ncols=True, | |
| ) | |
| speed_stats = {} | |
| time5 = time.perf_counter() | |
| for batch_idx, batch in enumerate(self.dataloader_val): | |
| time1 = time.perf_counter() | |
| speed_stats["data_load"] = f"{time1 - time5:0.3f}" | |
| batch = to_device(batch, self.device) | |
| time2 = time.perf_counter() | |
| retval = self.model(**batch) | |
| time3 = time.perf_counter() | |
| speed_stats["forward_time"] = f"{time3 - time2:0.3f}" | |
| loss, stats, weight = retval | |
| stats = {k: v for k, v in stats.items() if v is not None} | |
| if self.use_ddp or self.use_fsdp: | |
| # Apply weighted averaging for loss and stats | |
| loss = (loss * weight.type(loss.dtype)).sum() | |
| # if distributed, this method can also apply all_reduce() | |
| stats, weight = recursive_average(stats, weight, distributed=True) | |
| # Now weight is summation over all workers | |
| loss /= weight | |
| # Multiply world_size because DistributedDataParallel | |
| # automatically normalizes the gradient by world_size. | |
| loss *= self.world_size | |
| # Scale the loss since we're not updating for every mini-batch | |
| loss = loss | |
| time4 = time.perf_counter() | |
| if (batch_idx + 1) % self.log_interval == 0 or (batch_idx + 1) == len( | |
| self.dataloader_val | |
| ): | |
| pbar.update(self.log_interval) | |
| time_now = datetime.now() | |
| time_now = time_now.strftime("%Y-%m-%d %H:%M:%S") | |
| description = ( | |
| f"{time_now}, " | |
| f"rank: {self.local_rank}, " | |
| f"validation epoch: {epoch}/{self.max_epoch}, " | |
| f"step: {batch_idx+1}/{len(self.dataloader_val)}, " | |
| f"(loss: {loss.detach().cpu().item():.3f}), " | |
| f"{[(k, round(v.cpu().item(), 3)) for k, v in stats.items()]}, " | |
| f"{speed_stats}, " | |
| ) | |
| pbar.set_description(description) | |
| if self.writer: | |
| self.writer.add_scalar( | |
| f"rank{self.local_rank}_Loss/val", | |
| loss.item(), | |
| epoch * len(self.dataloader_val) + batch_idx, | |
| ) | |
| for key, var in stats.items(): | |
| self.writer.add_scalar( | |
| f"rank{self.local_rank}_{key}/val", | |
| var.item(), | |
| epoch * len(self.dataloader_val) + batch_idx, | |
| ) | |
| for key, var in speed_stats.items(): | |
| self.writer.add_scalar( | |
| f"rank{self.local_rank}_{key}/val", | |
| eval(var), | |
| epoch * len(self.dataloader_val) + batch_idx, | |
| ) | |