Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Kai Hu) | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """HIFI-GAN""" | |
| from typing import Dict, Optional, List | |
| import numpy as np | |
| from scipy.signal import get_window | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from torch.nn import Conv1d | |
| from torch.nn import ConvTranspose1d | |
| from torch.nn.utils import remove_weight_norm | |
| from torch.nn.utils import weight_norm | |
| from torch.distributions.uniform import Uniform | |
| try: | |
| from torch.nn.utils.parametrizations import weight_norm | |
| except ImportError: | |
| from torch.nn.utils import weight_norm | |
| from stepvocoder.cosyvoice2.hifigan.activation import Snake | |
| from stepvocoder.cosyvoice2.utils.common import get_padding, init_weights | |
| import torch._dynamo | |
| torch._dynamo.config.accumulated_cache_size_limit = 128 | |
| """hifigan based generator implementation. | |
| This code is modified from https://github.com/jik876/hifi-gan | |
| ,https://github.com/kan-bayashi/ParallelWaveGAN and | |
| https://github.com/NVIDIA/BigVGAN | |
| """ | |
| class ResBlock(torch.nn.Module): | |
| """Residual block module in HiFiGAN/BigVGAN.""" | |
| def __init__( | |
| self, | |
| channels: int = 512, | |
| kernel_size: int = 3, | |
| dilations: List[int] = [1, 3, 5], | |
| ): | |
| super(ResBlock, self).__init__() | |
| self.convs1 = nn.ModuleList() | |
| self.convs2 = nn.ModuleList() | |
| for dilation in dilations: | |
| self.convs1.append( | |
| weight_norm( | |
| Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| 1, | |
| dilation=dilation, | |
| padding=get_padding(kernel_size, dilation) | |
| ) | |
| ) | |
| ) | |
| self.convs2.append( | |
| weight_norm( | |
| Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| 1, | |
| dilation=1, | |
| padding=get_padding(kernel_size, 1) | |
| ) | |
| ) | |
| ) | |
| self.convs1.apply(init_weights) | |
| self.convs2.apply(init_weights) | |
| self.activations1 = nn.ModuleList([ | |
| Snake(channels, alpha_logscale=False) | |
| for _ in range(len(self.convs1)) | |
| ]) | |
| self.activations2 = nn.ModuleList([ | |
| Snake(channels, alpha_logscale=False) | |
| for _ in range(len(self.convs2)) | |
| ]) | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| for idx in range(len(self.convs1)): | |
| xt = self.activations1[idx](x) | |
| xt = self.convs1[idx](xt) | |
| xt = self.activations2[idx](xt) | |
| xt = self.convs2[idx](xt) | |
| x = xt + x | |
| return x | |
| def remove_weight_norm(self): | |
| for idx in range(len(self.convs1)): | |
| remove_weight_norm(self.convs1[idx]) | |
| remove_weight_norm(self.convs2[idx]) | |
| class SineGen(torch.nn.Module): | |
| """ Definition of sine generator | |
| SineGen(samp_rate, harmonic_num = 0, | |
| sine_amp = 0.1, noise_std = 0.003, | |
| voiced_threshold = 0, | |
| flag_for_pulse=False) | |
| samp_rate: sampling rate in Hz | |
| harmonic_num: number of harmonic overtones (default 0) | |
| sine_amp: amplitude of sine-wavefrom (default 0.1) | |
| noise_std: std of Gaussian noise (default 0.003) | |
| voiced_thoreshold: F0 threshold for U/V classification (default 0) | |
| flag_for_pulse: this SinGen is used inside PulseGen (default False) | |
| Note: when flag_for_pulse is True, the first time step of a voiced | |
| segment is always sin(np.pi) or cos(0) | |
| """ | |
| def __init__(self, samp_rate, harmonic_num=0, | |
| sine_amp=0.1, noise_std=0.003, | |
| voiced_threshold=0): | |
| super(SineGen, self).__init__() | |
| self.sine_amp = sine_amp | |
| self.noise_std = noise_std | |
| self.harmonic_num = harmonic_num | |
| self.sampling_rate = samp_rate | |
| self.voiced_threshold = voiced_threshold | |
| def _f02uv(self, f0): | |
| # generate uv signal | |
| uv = (f0 > self.voiced_threshold).type(torch.float32) | |
| return uv | |
| def forward(self, f0): | |
| """ | |
| :param f0: [B, 1, sample_len], Hz | |
| :return: [B, 1, sample_len] | |
| """ | |
| F_mat = torch.zeros((f0.size(0), self.harmonic_num + 1, f0.size(-1))).to(f0.device) | |
| for i in range(self.harmonic_num + 1): | |
| F_mat[:, i: i + 1, :] = f0 * (i + 1) / self.sampling_rate | |
| theta_mat = 2 * np.pi * (torch.cumsum(F_mat, dim=-1) % 1) | |
| u_dist = Uniform(low=-np.pi, high=np.pi) | |
| phase_vec = u_dist.sample(sample_shape=(f0.size(0), self.harmonic_num + 1, 1)).to(F_mat.device) | |
| phase_vec[:, 0, :] = 0 | |
| # generate sine waveforms | |
| sine_waves = self.sine_amp * torch.sin(theta_mat + phase_vec) | |
| # generate uv signal | |
| uv = self._f02uv(f0) | |
| # noise: for unvoiced should be similar to sine_amp | |
| # std = self.sine_amp/3 -> max value ~ self.sine_amp | |
| # . for voiced regions is self.noise_std | |
| noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3 | |
| noise = noise_amp * torch.randn_like(sine_waves) | |
| # first: set the unvoiced part to 0 by uv | |
| # then: additive noise | |
| sine_waves = sine_waves * uv + noise | |
| return sine_waves, uv, noise | |
| class SourceModuleHnNSF(torch.nn.Module): | |
| """ SourceModule for hn-nsf | |
| SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1, | |
| add_noise_std=0.003, voiced_threshod=0) | |
| sampling_rate: sampling_rate in Hz | |
| harmonic_num: number of harmonic above F0 (default: 0) | |
| sine_amp: amplitude of sine source signal (default: 0.1) | |
| add_noise_std: std of additive Gaussian noise (default: 0.003) | |
| note that amplitude of noise in unvoiced is decided | |
| by sine_amp | |
| voiced_threshold: threhold to set U/V given F0 (default: 0) | |
| Sine_source, noise_source = SourceModuleHnNSF(F0_sampled) | |
| F0_sampled (batchsize, length, 1) | |
| Sine_source (batchsize, length, 1) | |
| noise_source (batchsize, length 1) | |
| uv (batchsize, length, 1) | |
| """ | |
| def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1, | |
| add_noise_std=0.003, voiced_threshod=0): | |
| super(SourceModuleHnNSF, self).__init__() | |
| self.sine_amp = sine_amp | |
| self.noise_std = add_noise_std | |
| # to produce sine waveforms | |
| self.l_sin_gen = SineGen(sampling_rate, harmonic_num, | |
| sine_amp, add_noise_std, voiced_threshod) | |
| # to merge source harmonics into a single excitation | |
| self.l_linear = torch.nn.Linear(harmonic_num + 1, 1) | |
| self.l_tanh = torch.nn.Tanh() | |
| def forward(self, x): | |
| """ | |
| Sine_source, noise_source = SourceModuleHnNSF(F0_sampled) | |
| F0_sampled (batchsize, length, 1) | |
| Sine_source (batchsize, length, 1) | |
| noise_source (batchsize, length 1) | |
| """ | |
| # source for harmonic branch | |
| with torch.no_grad(): | |
| sine_wavs, uv, _ = self.l_sin_gen(x.transpose(1, 2)) | |
| sine_wavs = sine_wavs.transpose(1, 2) | |
| uv = uv.transpose(1, 2) | |
| sine_merge = self.l_tanh(self.l_linear(sine_wavs)) | |
| # source for noise branch, in the same shape as uv | |
| noise = torch.randn_like(uv) * self.sine_amp / 3 | |
| return sine_merge, noise, uv | |
| class SineGen2(torch.nn.Module): | |
| """ Definition of sine generator | |
| SineGen(samp_rate, harmonic_num = 0, | |
| sine_amp = 0.1, noise_std = 0.003, | |
| voiced_threshold = 0, | |
| flag_for_pulse=False) | |
| samp_rate: sampling rate in Hz | |
| harmonic_num: number of harmonic overtones (default 0) | |
| sine_amp: amplitude of sine-wavefrom (default 0.1) | |
| noise_std: std of Gaussian noise (default 0.003) | |
| voiced_thoreshold: F0 threshold for U/V classification (default 0) | |
| flag_for_pulse: this SinGen is used inside PulseGen (default False) | |
| Note: when flag_for_pulse is True, the first time step of a voiced | |
| segment is always sin(np.pi) or cos(0) | |
| """ | |
| def __init__(self, samp_rate, upsample_scale, harmonic_num=0, | |
| sine_amp=0.1, noise_std=0.003, | |
| voiced_threshold=0, | |
| flag_for_pulse=False): | |
| super(SineGen2, self).__init__() | |
| self.sine_amp = sine_amp | |
| self.noise_std = noise_std | |
| self.harmonic_num = harmonic_num | |
| self.dim = self.harmonic_num + 1 | |
| self.sampling_rate = samp_rate | |
| self.voiced_threshold = voiced_threshold | |
| self.flag_for_pulse = flag_for_pulse | |
| self.upsample_scale = upsample_scale | |
| def _f02uv(self, f0): | |
| # generate uv signal | |
| uv = (f0 > self.voiced_threshold).type(torch.float32) | |
| return uv | |
| def _f02sine(self, f0_values): | |
| """ f0_values: (batchsize, length, dim) | |
| where dim indicates fundamental tone and overtones | |
| """ | |
| # convert to F0 in rad. The interger part n can be ignored | |
| # because 2 * np.pi * n doesn't affect phase | |
| rad_values = (f0_values / self.sampling_rate) % 1 | |
| # initial phase noise (no noise for fundamental component) | |
| rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], device=f0_values.device) | |
| rand_ini[:, 0] = 0 | |
| rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini | |
| # instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad) | |
| if not self.flag_for_pulse: | |
| rad_values = torch.nn.functional.interpolate(rad_values.transpose(1, 2), | |
| scale_factor=1 / self.upsample_scale, | |
| mode="linear").transpose(1, 2) | |
| phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi | |
| phase = torch.nn.functional.interpolate(phase.transpose(1, 2) * self.upsample_scale, | |
| scale_factor=self.upsample_scale, mode="linear").transpose(1, 2) | |
| sines = torch.sin(phase) | |
| else: | |
| # If necessary, make sure that the first time step of every | |
| # voiced segments is sin(pi) or cos(0) | |
| # This is used for pulse-train generation | |
| # identify the last time step in unvoiced segments | |
| uv = self._f02uv(f0_values) | |
| uv_1 = torch.roll(uv, shifts=-1, dims=1) | |
| uv_1[:, -1, :] = 1 | |
| u_loc = (uv < 1) * (uv_1 > 0) | |
| # get the instantanouse phase | |
| tmp_cumsum = torch.cumsum(rad_values, dim=1) | |
| # different batch needs to be processed differently | |
| for idx in range(f0_values.shape[0]): | |
| temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :] | |
| temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :] | |
| # stores the accumulation of i.phase within | |
| # each voiced segments | |
| tmp_cumsum[idx, :, :] = 0 | |
| tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum | |
| # rad_values - tmp_cumsum: remove the accumulation of i.phase | |
| # within the previous voiced segment. | |
| i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1) | |
| # get the sines | |
| sines = torch.cos(i_phase * 2 * np.pi) | |
| return sines | |
| def forward(self, f0): | |
| """ sine_tensor, uv = forward(f0) | |
| input F0: tensor(batchsize=1, length, dim=1) | |
| f0 for unvoiced steps should be 0 | |
| output sine_tensor: tensor(batchsize=1, length, dim) | |
| output uv: tensor(batchsize=1, length, 1) | |
| """ | |
| # fundamental component | |
| fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device)) | |
| # generate sine waveforms | |
| sine_waves = self._f02sine(fn) * self.sine_amp | |
| # generate uv signal | |
| uv = self._f02uv(f0) | |
| # noise: for unvoiced should be similar to sine_amp | |
| # std = self.sine_amp/3 -> max value ~ self.sine_amp | |
| # . for voiced regions is self.noise_std | |
| noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3 | |
| noise = noise_amp * torch.randn_like(sine_waves) | |
| # first: set the unvoiced part to 0 by uv | |
| # then: additive noise | |
| sine_waves = sine_waves * uv + noise | |
| return sine_waves, uv, noise | |
| class SourceModuleHnNSF2(torch.nn.Module): | |
| """ SourceModule for hn-nsf | |
| SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1, | |
| add_noise_std=0.003, voiced_threshod=0) | |
| sampling_rate: sampling_rate in Hz | |
| harmonic_num: number of harmonic above F0 (default: 0) | |
| sine_amp: amplitude of sine source signal (default: 0.1) | |
| add_noise_std: std of additive Gaussian noise (default: 0.003) | |
| note that amplitude of noise in unvoiced is decided | |
| by sine_amp | |
| voiced_threshold: threhold to set U/V given F0 (default: 0) | |
| Sine_source, noise_source = SourceModuleHnNSF(F0_sampled) | |
| F0_sampled (batchsize, length, 1) | |
| Sine_source (batchsize, length, 1) | |
| noise_source (batchsize, length 1) | |
| uv (batchsize, length, 1) | |
| """ | |
| def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1, | |
| add_noise_std=0.003, voiced_threshod=0): | |
| super(SourceModuleHnNSF2, self).__init__() | |
| self.sine_amp = sine_amp | |
| self.noise_std = add_noise_std | |
| # to produce sine waveforms | |
| self.l_sin_gen = SineGen2(sampling_rate, upsample_scale, harmonic_num, | |
| sine_amp, add_noise_std, voiced_threshod) | |
| # to merge source harmonics into a single excitation | |
| self.l_linear = torch.nn.Linear(harmonic_num + 1, 1) | |
| self.l_tanh = torch.nn.Tanh() | |
| def forward(self, x): | |
| """ | |
| Sine_source, noise_source = SourceModuleHnNSF(F0_sampled) | |
| F0_sampled (batchsize, length, 1) | |
| Sine_source (batchsize, length, 1) | |
| noise_source (batchsize, length 1) | |
| """ | |
| # source for harmonic branch | |
| with torch.no_grad(): | |
| sine_wavs, uv, _ = self.l_sin_gen(x) | |
| sine_merge = self.l_tanh(self.l_linear(sine_wavs)) | |
| # source for noise branch, in the same shape as uv | |
| noise = torch.randn_like(uv) * self.sine_amp / 3 | |
| return sine_merge, noise, uv | |
| class HiFTGenerator(nn.Module): | |
| """ | |
| HiFTNet Generator: Neural Source Filter + ISTFTNet | |
| https://arxiv.org/abs/2309.09493 | |
| """ | |
| def __init__( | |
| self, | |
| in_channels: int = 80, | |
| base_channels: int = 512, | |
| nb_harmonics: int = 8, | |
| sampling_rate: int = 22050, | |
| nsf_alpha: float = 0.1, | |
| nsf_sigma: float = 0.003, | |
| nsf_voiced_threshold: float = 10, | |
| upsample_rates: List[int] = [8, 8], | |
| upsample_kernel_sizes: List[int] = [16, 16], | |
| istft_params: Dict[str, int] = {"n_fft": 16, "hop_len": 4}, | |
| resblock_kernel_sizes: List[int] = [3, 7, 11], | |
| resblock_dilation_sizes: List[List[int]] = [[1, 3, 5], [1, 3, 5], [1, 3, 5]], | |
| source_resblock_kernel_sizes: List[int] = [7, 11], | |
| source_resblock_dilation_sizes: List[List[int]] = [[1, 3, 5], [1, 3, 5]], | |
| lrelu_slope: float = 0.1, | |
| audio_limit: float = 0.99, | |
| f0_predictor: torch.nn.Module = None, | |
| ): | |
| super(HiFTGenerator, self).__init__() | |
| self.out_channels = 1 | |
| self.nb_harmonics = nb_harmonics | |
| self.sampling_rate = sampling_rate | |
| self.istft_params = istft_params | |
| self.lrelu_slope = lrelu_slope | |
| self.audio_limit = audio_limit | |
| self.num_kernels = len(resblock_kernel_sizes) | |
| self.num_upsamples = len(upsample_rates) | |
| # NOTE in CosyVoice2, we use the original SourceModuleHnNSF implementation | |
| # this_SourceModuleHnNSF = SourceModuleHnNSF if self.sampling_rate == 22050 else SourceModuleHnNSF2 | |
| this_SourceModuleHnNSF = SourceModuleHnNSF2 # WBY | |
| self.m_source = this_SourceModuleHnNSF( | |
| sampling_rate=sampling_rate, | |
| upsample_scale=np.prod(upsample_rates) * istft_params["hop_len"], | |
| harmonic_num=nb_harmonics, | |
| sine_amp=nsf_alpha, | |
| add_noise_std=nsf_sigma, | |
| voiced_threshod=nsf_voiced_threshold) | |
| self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * istft_params["hop_len"]) | |
| self.conv_pre = weight_norm( | |
| Conv1d(in_channels, base_channels, 7, 1, padding=3) | |
| ) | |
| # Up | |
| self.ups = nn.ModuleList() | |
| for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): | |
| self.ups.append( | |
| weight_norm( | |
| ConvTranspose1d( | |
| base_channels // (2**i), | |
| base_channels // (2**(i + 1)), | |
| k, | |
| u, | |
| padding=(k - u) // 2, | |
| ) | |
| ) | |
| ) | |
| # Down | |
| self.source_downs = nn.ModuleList() | |
| self.source_resblocks = nn.ModuleList() | |
| downsample_rates = [1] + upsample_rates[::-1][:-1] | |
| downsample_cum_rates = np.cumprod(downsample_rates) | |
| for i, (u, k, d) in enumerate(zip(downsample_cum_rates[::-1], source_resblock_kernel_sizes, source_resblock_dilation_sizes)): | |
| if u == 1: | |
| self.source_downs.append( | |
| Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), 1, 1) | |
| ) | |
| else: | |
| self.source_downs.append( | |
| Conv1d(istft_params["n_fft"] + 2, base_channels // (2 ** (i + 1)), u * 2, u, padding=(u // 2)) | |
| ) | |
| self.source_resblocks.append( | |
| ResBlock(base_channels // (2 ** (i + 1)), k, d) | |
| ) | |
| self.resblocks = nn.ModuleList() | |
| for i in range(len(self.ups)): | |
| ch = base_channels // (2**(i + 1)) | |
| for _, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)): | |
| self.resblocks.append(ResBlock(ch, k, d)) | |
| self.conv_post = weight_norm(Conv1d(ch, istft_params["n_fft"] + 2, 7, 1, padding=3)) | |
| self.ups.apply(init_weights) | |
| self.conv_post.apply(init_weights) | |
| self.reflection_pad = nn.ReflectionPad1d((1, 0)) | |
| self.stft_window = torch.from_numpy(get_window("hann", istft_params["n_fft"], fftbins=True).astype(np.float32)) | |
| self.f0_predictor = f0_predictor | |
| # for cuda graph | |
| self.use_cuda_graph = False | |
| self.graph = {} | |
| self.inference_buffers = {} | |
| def remove_weight_norm(self): | |
| print('Removing weight norm...') | |
| for l in self.ups: | |
| remove_weight_norm(l) | |
| for l in self.resblocks: | |
| l.remove_weight_norm() | |
| remove_weight_norm(self.conv_pre) | |
| remove_weight_norm(self.conv_post) | |
| self.m_source.remove_weight_norm() | |
| for l in self.source_downs: | |
| remove_weight_norm(l) | |
| for l in self.source_resblocks: | |
| l.remove_weight_norm() | |
| def _stft(self, x): | |
| spec = torch.stft( | |
| x, | |
| self.istft_params["n_fft"], self.istft_params["hop_len"], self.istft_params["n_fft"], window=self.stft_window.to(x.device), | |
| return_complex=True) | |
| spec = torch.view_as_real(spec) # [B, F, TT, 2] | |
| return spec[..., 0], spec[..., 1] | |
| def _istft(self, magnitude, phase): | |
| magnitude = torch.clip(magnitude, max=1e2) | |
| real = magnitude * torch.cos(phase) | |
| img = magnitude * torch.sin(phase) | |
| inverse_transform = torch.istft(torch.complex(real, img), self.istft_params["n_fft"], self.istft_params["hop_len"], | |
| self.istft_params["n_fft"], window=self.stft_window.to(magnitude.device)) | |
| return inverse_transform | |
| def decode(self, x: torch.Tensor, s: torch.Tensor = torch.zeros(1, 1, 0)) -> torch.Tensor: | |
| s_stft_real, s_stft_imag = self._stft(s.squeeze(1)) | |
| s_stft = torch.cat([s_stft_real, s_stft_imag], dim=1).to(s.dtype) | |
| if self.use_cuda_graph and x.shape[-1] in self.graph: | |
| self.inference_buffers[x.shape[-1]]['static_inputs']['static_x'].copy_(x) | |
| self.inference_buffers[x.shape[-1]]['static_inputs']['static_s_stft'].copy_(s_stft) | |
| self.graph[x.shape[-1]].replay() | |
| x = self.inference_buffers[x.shape[-1]]['static_outputs']['static_output_x'] | |
| else: | |
| x = self.decode_without_stft(x, s_stft) | |
| magnitude = torch.exp(x[:, :self.istft_params["n_fft"] // 2 + 1, :]) | |
| phase = torch.sin(x[:, self.istft_params["n_fft"] // 2 + 1:, :]) # actually, sin is redundancy | |
| magnitude = magnitude.to(torch.float32) | |
| phase = phase.to(torch.float32) | |
| x = self._istft(magnitude, phase).to(x.dtype) | |
| x = torch.clamp(x, -self.audio_limit, self.audio_limit) | |
| return x | |
| def decode_without_stft(self, x: torch.Tensor, s_stft: torch.Tensor) -> torch.Tensor: | |
| x = self.conv_pre(x) | |
| for i in range(self.num_upsamples): | |
| x = F.leaky_relu(x, self.lrelu_slope) | |
| x = self.ups[i](x) | |
| if i == self.num_upsamples - 1: | |
| x = self.reflection_pad(x) | |
| # fusion | |
| si = self.source_downs[i](s_stft) | |
| si = self.source_resblocks[i](si) | |
| x = x + si | |
| xs = None | |
| for j in range(self.num_kernels): | |
| if xs is None: | |
| xs = self.resblocks[i * self.num_kernels + j](x) | |
| else: | |
| xs += self.resblocks[i * self.num_kernels + j](x) | |
| x = xs / self.num_kernels | |
| x = F.leaky_relu(x) | |
| x = self.conv_post(x) | |
| return x | |
| def forward( | |
| self, | |
| batch: dict, | |
| device: torch.device, | |
| ) -> Dict[str, Optional[torch.Tensor]]: | |
| speech_feat = batch['speech_feat'].transpose(1, 2).to(device) | |
| # mel->f0 | |
| f0 = self.f0_predictor(speech_feat) | |
| # f0->source | |
| s = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t | |
| s, _, _ = self.m_source(s) | |
| s = s.transpose(1, 2) | |
| # mel+source->speech | |
| generated_speech = self.decode(x=speech_feat, s=s) | |
| return generated_speech, f0 | |
| def _init_cuda_graph(self): | |
| self.use_cuda_graph = True | |
| dummy_param = next(self.parameters()) | |
| for chunk_size in [30, 48, 96]: | |
| time_stamps = chunk_size + 8 if chunk_size != 30 else chunk_size | |
| num_frames = (time_stamps * 480 - 1) // self.istft_params["hop_len"] + 2 | |
| static_x = torch.zeros((1, 80, time_stamps)).to(dummy_param) | |
| static_s_stft = torch.zeros((1, self.istft_params["n_fft"] + 2, num_frames)).to(dummy_param) | |
| static_inputs = { | |
| 'static_x': static_x, | |
| 'static_s_stft': static_s_stft | |
| } | |
| self.decode_without_stft(x=static_x, s_stft=static_s_stft) | |
| graph = torch.cuda.CUDAGraph() | |
| with torch.cuda.graph(graph): | |
| static_output_x = self.decode_without_stft(x=static_x, s_stft=static_s_stft) | |
| static_outputs = { | |
| 'static_output_x': static_output_x, | |
| } | |
| self.graph[time_stamps] = graph | |
| self.inference_buffers[time_stamps] = { | |
| 'static_inputs': static_inputs, | |
| 'static_outputs': static_outputs | |
| } | |
| print(f"CUDA Graph initialized successfully for chunk generator") | |
| def inference(self, speech_feat: torch.Tensor, cache_source: torch.Tensor = torch.zeros(1, 1, 0)) -> torch.Tensor: | |
| # mel->f0 | |
| f0 = self.f0_predictor(speech_feat) | |
| # f0->source | |
| s = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t | |
| s, _, _ = self.m_source(s) | |
| s = s.transpose(1, 2) | |
| # use cache_source to avoid glitch | |
| if cache_source.shape[2] != 0: | |
| s[:, :, :cache_source.shape[2]] = cache_source | |
| generated_speech = self.decode(x=speech_feat, s=s) | |
| return generated_speech, s |