# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List import onnxruntime import torch import torch.nn.functional as F from stepvocoder.cosyvoice2.flow.decoder_dit import DiT from stepvocoder.cosyvoice2.utils.mask import make_pad_mask """ Inference wrapper """ class CausalConditionalCFM(torch.nn.Module): def __init__(self, estimator: DiT, inference_cfg_rate:float=0.7): super().__init__() self.estimator = estimator self.inference_cfg_rate = inference_cfg_rate self.out_channels = estimator.out_channels # a maximum of 600s self.register_buffer('rand_noise', torch.randn([1, self.out_channels, 50 * 600]), persistent=False) self.register_buffer('cnn_cache_buffer', torch.zeros(16, 16, 2, 1024, 2), persistent=False) self.register_buffer('att_cache_buffer', torch.zeros(16, 16, 2, 8, 1000, 128), persistent=False) def scatter_cuda_graph(self, enable_cuda_graph: bool): if enable_cuda_graph: self.estimator._init_cuda_graph_all() def solve_euler(self, x, t_span, mu, mask, spks, cond): """ Fixed euler solver for ODEs. Args: x (torch.Tensor): random noise t_span (torch.Tensor): n_timesteps interpolated shape: (n_timesteps + 1,) mu (torch.Tensor): output of encoder shape: (batch_size, n_feats, mel_timesteps) mask (torch.Tensor): output_mask shape: (batch_size, 1, mel_timesteps) spks (torch.Tensor, optional): speaker ids. Defaults to None. shape: (batch_size, spk_emb_dim) cond: Not used but kept for future purposes """ t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0] t = t.unsqueeze(dim=0) assert self.inference_cfg_rate > 0, 'inference_cfg_rate better > 0' # constant during denoising mask_in = torch.cat([mask, mask], dim=0) mu_in = torch.cat([mu, torch.zeros_like(mu)], dim=0) spks_in = torch.cat([spks, torch.zeros_like(spks)], dim=0) cond_in = torch.cat([cond, torch.zeros_like(cond)], dim=0) for step in range(1, len(t_span)): x_in = torch.cat([x, x], dim=0) t_in = torch.cat([t, t], dim=0) dphi_dt = self.estimator.forward( x_in, mask_in, mu_in, t_in, spks_in, cond_in, ) dphi_dt, cfg_dphi_dt = torch.split(dphi_dt, [x.size(0), x.size(0)], dim=0) dphi_dt = ((1.0 + self.inference_cfg_rate) * dphi_dt - self.inference_cfg_rate * cfg_dphi_dt) x = x + dt * dphi_dt t = t + dt if step < len(t_span) - 1: dt = t_span[step + 1] - t return x @torch.inference_mode() def forward(self, mu, mask, spks, cond, n_timesteps=10, temperature=1.0): z = self.rand_noise[:, :, :mu.size(2)] * temperature t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype) # cosine scheduling t_span = 1 - torch.cos(t_span * 0.5 * torch.pi) return self.solve_euler(z, t_span, mu, mask, spks, cond) def solve_euler_chunk(self, x:torch.Tensor, t_span:torch.Tensor, mu:torch.Tensor, spks:torch.Tensor, cond:torch.Tensor, cnn_cache:torch.Tensor=None, att_cache:torch.Tensor=None, ): """ Fixed euler solver for ODEs. Args: x (torch.Tensor): random noise t_span (torch.Tensor): n_timesteps interpolated shape: (n_timesteps + 1,) mu (torch.Tensor): output of encoder shape: (batch_size, n_feats, mel_timesteps) mask (torch.Tensor): output_mask shape: (batch_size, 1, mel_timesteps) spks (torch.Tensor, optional): speaker ids. Defaults to None. shape: (batch_size, spk_emb_dim) cond: Not used but kept for future purposes cnn_cache: shape (n_time, depth, b, c1+c2, 2) att_cache: shape (n_time, depth, b, nh, t, c * 2) """ assert self.inference_cfg_rate > 0, 'cfg rate should be > 0' t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0] t = t.unsqueeze(dim=0) # (b,) # setup initial cache if cnn_cache is None: cnn_cache = [None for _ in range(len(t_span)-1)] if att_cache is None: att_cache = [None for _ in range(len(t_span)-1)] # next chunk's cache at each timestep if att_cache[0] is not None: last_att_len = att_cache.shape[4] else: last_att_len = 0 # constant during denoising mu_in = torch.cat([mu, torch.zeros_like(mu)], dim=0) spks_in = torch.cat([spks, torch.zeros_like(spks)], dim=0) cond_in = torch.cat([cond, torch.zeros_like(cond)], dim=0) for step in range(1, len(t_span)): # torch.cuda.memory._record_memory_history(max_entries=100000) # torch.cuda.memory._record_memory_history(max_entries=100000) this_att_cache = att_cache[step-1] this_cnn_cache = cnn_cache[step-1] dphi_dt, this_new_cnn_cache, this_new_att_cache = self.estimator.forward_chunk( x = x.repeat(2, 1, 1), mu = mu_in, t = t.repeat(2), spks = spks_in, cond = cond_in, cnn_cache = this_cnn_cache, att_cache = this_att_cache, ) dphi_dt, cfg_dphi_dt = dphi_dt.chunk(2, dim=0) dphi_dt = ((1.0 + self.inference_cfg_rate) * dphi_dt - self.inference_cfg_rate * cfg_dphi_dt) x = x + dt * dphi_dt t = t + dt if step < len(t_span) - 1: dt = t_span[step + 1] - t self.cnn_cache_buffer[step-1] = this_new_cnn_cache self.att_cache_buffer[step-1][:, :, :, :x.shape[2]+last_att_len, :] = this_new_att_cache cnn_cache = self.cnn_cache_buffer att_cache = self.att_cache_buffer[:, :, :, :, :x.shape[2]+last_att_len, :] return x, cnn_cache, att_cache @torch.inference_mode() def forward_chunk(self, mu:torch.Tensor, spks:torch.Tensor, cond:torch.Tensor, n_timesteps:int=10, temperature:float=1.0, cnn_cache:torch.Tensor=None, att_cache:torch.Tensor=None, ): """ Args: mu(torch.Tensor): shape (b, c, t) spks(torch.Tensor): shape (b, 192) cond(torch.Tensor): shape (b, c, t) cnn_cache: shape (n_time, depth, b, c1+c2, 2) att_cache: shape (n_time, depth, b, nh, t, c * 2) """ # get offset from att_cache offset = att_cache.shape[4] if att_cache is not None else 0 z = self.rand_noise[:, :, offset:offset+mu.size(2)] * temperature t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype) # cosine scheduling t_span = 1 - torch.cos(t_span * 0.5 * torch.pi) x, new_cnn_cache, new_att_cache = self.solve_euler_chunk( x=z, t_span=t_span, mu=mu, spks=spks, cond=cond, att_cache=att_cache, cnn_cache=cnn_cache, ) return x, new_cnn_cache, new_att_cache