Spaces:
Running
Running
Zenith Wang
commited on
Commit
·
b34c488
1
Parent(s):
578098f
使用官方示例代码结构,简化实现,固定依赖版本
Browse files- app.py +59 -171
- requirements.txt +2 -4
app.py
CHANGED
|
@@ -1,18 +1,11 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import time
|
| 3 |
import base64
|
|
|
|
| 4 |
import os
|
| 5 |
from io import BytesIO
|
| 6 |
from PIL import Image
|
| 7 |
|
| 8 |
-
# 清理环境变量中的代理设置,避免与 OpenAI 客户端冲突
|
| 9 |
-
for key in list(os.environ.keys()):
|
| 10 |
-
if 'proxy' in key.lower() or 'PROXY' in key:
|
| 11 |
-
del os.environ[key]
|
| 12 |
-
|
| 13 |
-
# 导入 OpenAI(在清理环境变量后)
|
| 14 |
-
from openai import OpenAI
|
| 15 |
-
|
| 16 |
# 配置
|
| 17 |
BASE_URL = "https://api.stepfun.com/v1"
|
| 18 |
# 从环境变量获取API密钥
|
|
@@ -29,53 +22,11 @@ def image_to_base64(image):
|
|
| 29 |
if isinstance(image, Image.Image):
|
| 30 |
buffered = BytesIO()
|
| 31 |
image.save(buffered, format="PNG")
|
| 32 |
-
img_str = base64.b64encode(buffered.getvalue()).decode()
|
| 33 |
return img_str
|
| 34 |
|
| 35 |
return None
|
| 36 |
|
| 37 |
-
def create_client():
|
| 38 |
-
"""创建 OpenAI 客户端,处理各种环境问题"""
|
| 39 |
-
import importlib
|
| 40 |
-
import sys
|
| 41 |
-
|
| 42 |
-
# 重新加载 openai 模块以确保干净的状态
|
| 43 |
-
if 'openai' in sys.modules:
|
| 44 |
-
importlib.reload(sys.modules['openai'])
|
| 45 |
-
|
| 46 |
-
# 尝试不同的初始化方式
|
| 47 |
-
try:
|
| 48 |
-
# 方式1:只传递必需参数
|
| 49 |
-
return OpenAI(
|
| 50 |
-
api_key=STEP_API_KEY,
|
| 51 |
-
base_url=BASE_URL
|
| 52 |
-
)
|
| 53 |
-
except:
|
| 54 |
-
pass
|
| 55 |
-
|
| 56 |
-
try:
|
| 57 |
-
# 方式2:通过环境变量
|
| 58 |
-
os.environ['OPENAI_API_KEY'] = STEP_API_KEY
|
| 59 |
-
os.environ['OPENAI_BASE_URL'] = BASE_URL
|
| 60 |
-
return OpenAI()
|
| 61 |
-
except:
|
| 62 |
-
pass
|
| 63 |
-
|
| 64 |
-
# 方式3:使用 httpx 客户端自定义
|
| 65 |
-
try:
|
| 66 |
-
import httpx
|
| 67 |
-
http_client = httpx.Client()
|
| 68 |
-
return OpenAI(
|
| 69 |
-
api_key=STEP_API_KEY,
|
| 70 |
-
base_url=BASE_URL,
|
| 71 |
-
http_client=http_client
|
| 72 |
-
)
|
| 73 |
-
except:
|
| 74 |
-
pass
|
| 75 |
-
|
| 76 |
-
# 如果都失败,返回 None
|
| 77 |
-
return None
|
| 78 |
-
|
| 79 |
def call_step_api(image, prompt, model, temperature=0.7, max_tokens=2000):
|
| 80 |
"""调用Step API进行分析,支持纯文本和图像+文本"""
|
| 81 |
|
|
@@ -87,7 +38,7 @@ def call_step_api(image, prompt, model, temperature=0.7, max_tokens=2000):
|
|
| 87 |
yield "", "❌ API密钥未配置。请在 Hugging Face Space 的 Settings 中添加 STEP_API_KEY 环境变量。"
|
| 88 |
return
|
| 89 |
|
| 90 |
-
# 构造消息内容
|
| 91 |
if image is not None:
|
| 92 |
# 有图片的情况
|
| 93 |
try:
|
|
@@ -95,109 +46,55 @@ def call_step_api(image, prompt, model, temperature=0.7, max_tokens=2000):
|
|
| 95 |
if base64_image is None:
|
| 96 |
yield "", "❌ 图片处理失败"
|
| 97 |
return
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
"image_url": {
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
}
|
| 106 |
-
},
|
| 107 |
-
{
|
| 108 |
-
"type": "text",
|
| 109 |
-
"text": prompt
|
| 110 |
-
}
|
| 111 |
]
|
| 112 |
except Exception as e:
|
| 113 |
yield "", f"❌ 图片处理错误: {str(e)}"
|
| 114 |
return
|
| 115 |
else:
|
| 116 |
# 纯文本的情况
|
| 117 |
-
|
|
|
|
|
|
|
| 118 |
|
| 119 |
-
#
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
}
|
| 125 |
-
]
|
| 126 |
-
|
| 127 |
-
# 创建OpenAI客户端
|
| 128 |
-
client = create_client()
|
| 129 |
-
if client is None:
|
| 130 |
-
# 如果客户端创建失败,尝试直接使用 requests
|
| 131 |
-
try:
|
| 132 |
-
import requests
|
| 133 |
-
|
| 134 |
-
headers = {
|
| 135 |
-
"Authorization": f"Bearer {STEP_API_KEY}",
|
| 136 |
-
"Content-Type": "application/json"
|
| 137 |
-
}
|
| 138 |
-
|
| 139 |
-
data = {
|
| 140 |
-
"model": model,
|
| 141 |
-
"messages": messages,
|
| 142 |
-
"temperature": temperature,
|
| 143 |
-
"max_tokens": max_tokens,
|
| 144 |
-
"stream": False
|
| 145 |
-
}
|
| 146 |
-
|
| 147 |
-
response = requests.post(
|
| 148 |
-
f"{BASE_URL}/chat/completions",
|
| 149 |
-
headers=headers,
|
| 150 |
-
json=data,
|
| 151 |
-
timeout=60
|
| 152 |
-
)
|
| 153 |
-
|
| 154 |
-
if response.status_code == 200:
|
| 155 |
-
result = response.json()
|
| 156 |
-
if result.get("choices") and result["choices"][0].get("message"):
|
| 157 |
-
content = result["choices"][0]["message"]["content"]
|
| 158 |
-
|
| 159 |
-
# 解析 reasoning 标记
|
| 160 |
-
reasoning_content = ""
|
| 161 |
-
final_answer = content
|
| 162 |
-
|
| 163 |
-
if "<reasoning>" in content and "</reasoning>" in content:
|
| 164 |
-
parts = content.split("<reasoning>")
|
| 165 |
-
before = parts[0]
|
| 166 |
-
after_reasoning = parts[1].split("</reasoning>")
|
| 167 |
-
reasoning_content = after_reasoning[0]
|
| 168 |
-
final_answer = before + after_reasoning[1] if len(after_reasoning) > 1 else before
|
| 169 |
-
|
| 170 |
-
yield reasoning_content, final_answer
|
| 171 |
-
else:
|
| 172 |
-
yield "", "❌ API 返回格式错误"
|
| 173 |
-
else:
|
| 174 |
-
yield "", f"❌ API 请求失败: {response.status_code}"
|
| 175 |
-
|
| 176 |
-
except Exception as e:
|
| 177 |
-
yield "", f"❌ 请求失败: {str(e)}"
|
| 178 |
return
|
| 179 |
|
|
|
|
|
|
|
|
|
|
| 180 |
try:
|
| 181 |
-
#
|
| 182 |
-
start_time = time.time()
|
| 183 |
-
|
| 184 |
-
# 流式输出
|
| 185 |
response = client.chat.completions.create(
|
| 186 |
model=model,
|
| 187 |
messages=messages,
|
| 188 |
-
temperature=temperature,
|
| 189 |
-
max_tokens=max_tokens,
|
| 190 |
stream=True
|
| 191 |
)
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
for chunk in response:
|
| 200 |
-
|
|
|
|
| 201 |
delta = chunk.choices[0].delta
|
| 202 |
|
| 203 |
if hasattr(delta, 'content') and delta.content:
|
|
@@ -208,47 +105,38 @@ def call_step_api(image, prompt, model, temperature=0.7, max_tokens=2000):
|
|
| 208 |
if "<reasoning>" in content:
|
| 209 |
is_reasoning = True
|
| 210 |
reasoning_started = True
|
| 211 |
-
#
|
| 212 |
-
|
| 213 |
-
if
|
| 214 |
-
final_answer +=
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
reasoning_content += after_tag
|
| 218 |
elif "</reasoning>" in content:
|
| 219 |
-
#
|
| 220 |
-
|
| 221 |
-
|
|
|
|
| 222 |
is_reasoning = False
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
final_answer += after_reasoning
|
| 226 |
elif is_reasoning:
|
| 227 |
reasoning_content += content
|
| 228 |
else:
|
| 229 |
final_answer += content
|
| 230 |
|
| 231 |
# 实时输出
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
else:
|
| 235 |
-
yield "", final_answer
|
| 236 |
-
|
| 237 |
-
# 添加生成时间
|
| 238 |
-
elapsed_time = time.time() - start_time
|
| 239 |
-
time_info = f"\n\n⏱️ 生成用时: {elapsed_time:.2f}秒"
|
| 240 |
-
final_answer += time_info
|
| 241 |
-
|
| 242 |
-
yield reasoning_content, final_answer
|
| 243 |
-
|
| 244 |
except Exception as e:
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
|
|
|
|
|
|
| 252 |
|
| 253 |
# 创建Gradio界面
|
| 254 |
with gr.Blocks(title="Step-3", theme=gr.themes.Soft()) as demo:
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import time
|
| 3 |
import base64
|
| 4 |
+
from openai import OpenAI
|
| 5 |
import os
|
| 6 |
from io import BytesIO
|
| 7 |
from PIL import Image
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
# 配置
|
| 10 |
BASE_URL = "https://api.stepfun.com/v1"
|
| 11 |
# 从环境变量获取API密钥
|
|
|
|
| 22 |
if isinstance(image, Image.Image):
|
| 23 |
buffered = BytesIO()
|
| 24 |
image.save(buffered, format="PNG")
|
| 25 |
+
img_str = base64.b64encode(buffered.getvalue()).decode('utf-8')
|
| 26 |
return img_str
|
| 27 |
|
| 28 |
return None
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
def call_step_api(image, prompt, model, temperature=0.7, max_tokens=2000):
|
| 31 |
"""调用Step API进行分析,支持纯文本和图像+文本"""
|
| 32 |
|
|
|
|
| 38 |
yield "", "❌ API密钥未配置。请在 Hugging Face Space 的 Settings 中添加 STEP_API_KEY 环境变量。"
|
| 39 |
return
|
| 40 |
|
| 41 |
+
# 构造消息内容 - 参考官方示例
|
| 42 |
if image is not None:
|
| 43 |
# 有图片的情况
|
| 44 |
try:
|
|
|
|
| 46 |
if base64_image is None:
|
| 47 |
yield "", "❌ 图片处理失败"
|
| 48 |
return
|
| 49 |
+
|
| 50 |
+
# 按照官方示例的格式构造消息
|
| 51 |
+
messages = [
|
| 52 |
+
{"role": "user", "content": [
|
| 53 |
+
{"type": "image_url", "image_url": {"url": f"data:image/jpg;base64,{base64_image}", "detail": "high"}},
|
| 54 |
+
{"type": "text", "text": prompt}
|
| 55 |
+
]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
]
|
| 57 |
except Exception as e:
|
| 58 |
yield "", f"❌ 图片处理错误: {str(e)}"
|
| 59 |
return
|
| 60 |
else:
|
| 61 |
# 纯文本的情况
|
| 62 |
+
messages = [
|
| 63 |
+
{"role": "user", "content": prompt}
|
| 64 |
+
]
|
| 65 |
|
| 66 |
+
# 创建OpenAI客户端 - 完全按照官方示例
|
| 67 |
+
try:
|
| 68 |
+
client = OpenAI(api_key=STEP_API_KEY, base_url=BASE_URL)
|
| 69 |
+
except Exception as e:
|
| 70 |
+
yield "", f"❌ 客户端初始化失败: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
return
|
| 72 |
|
| 73 |
+
# 记录开始时间
|
| 74 |
+
start_time = time.time()
|
| 75 |
+
|
| 76 |
try:
|
| 77 |
+
# 调用API - 按照官方示例
|
|
|
|
|
|
|
|
|
|
| 78 |
response = client.chat.completions.create(
|
| 79 |
model=model,
|
| 80 |
messages=messages,
|
|
|
|
|
|
|
| 81 |
stream=True
|
| 82 |
)
|
| 83 |
+
except Exception as e:
|
| 84 |
+
yield "", f"❌ API请求失败: {str(e)}"
|
| 85 |
+
return
|
| 86 |
+
|
| 87 |
+
# 处理流式响应
|
| 88 |
+
full_response = ""
|
| 89 |
+
reasoning_content = ""
|
| 90 |
+
final_answer = ""
|
| 91 |
+
is_reasoning = False
|
| 92 |
+
reasoning_started = False
|
| 93 |
+
|
| 94 |
+
try:
|
| 95 |
for chunk in response:
|
| 96 |
+
# 按照官方示例处理chunk
|
| 97 |
+
if chunk.choices and len(chunk.choices) > 0:
|
| 98 |
delta = chunk.choices[0].delta
|
| 99 |
|
| 100 |
if hasattr(delta, 'content') and delta.content:
|
|
|
|
| 105 |
if "<reasoning>" in content:
|
| 106 |
is_reasoning = True
|
| 107 |
reasoning_started = True
|
| 108 |
+
# 处理标记前后的内容
|
| 109 |
+
parts = content.split("<reasoning>")
|
| 110 |
+
if parts[0]:
|
| 111 |
+
final_answer += parts[0]
|
| 112 |
+
if len(parts) > 1:
|
| 113 |
+
reasoning_content += parts[1]
|
|
|
|
| 114 |
elif "</reasoning>" in content:
|
| 115 |
+
# 处理结束标记
|
| 116 |
+
parts = content.split("</reasoning>")
|
| 117 |
+
if parts[0]:
|
| 118 |
+
reasoning_content += parts[0]
|
| 119 |
is_reasoning = False
|
| 120 |
+
if len(parts) > 1:
|
| 121 |
+
final_answer += parts[1]
|
|
|
|
| 122 |
elif is_reasoning:
|
| 123 |
reasoning_content += content
|
| 124 |
else:
|
| 125 |
final_answer += content
|
| 126 |
|
| 127 |
# 实时输出
|
| 128 |
+
yield reasoning_content, final_answer
|
| 129 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
except Exception as e:
|
| 131 |
+
yield reasoning_content, final_answer + f"\n\n❌ 流处理错误: {str(e)}"
|
| 132 |
+
return
|
| 133 |
+
|
| 134 |
+
# 添加生成时间
|
| 135 |
+
elapsed_time = time.time() - start_time
|
| 136 |
+
time_info = f"\n\n⏱️ 生成用时: {elapsed_time:.2f}秒"
|
| 137 |
+
final_answer += time_info
|
| 138 |
+
|
| 139 |
+
yield reasoning_content, final_answer
|
| 140 |
|
| 141 |
# 创建Gradio界面
|
| 142 |
with gr.Blocks(title="Step-3", theme=gr.themes.Soft()) as demo:
|
requirements.txt
CHANGED
|
@@ -1,5 +1,3 @@
|
|
| 1 |
gradio==4.19.2
|
| 2 |
-
openai
|
| 3 |
-
Pillow
|
| 4 |
-
httpx>=0.24.0
|
| 5 |
-
requests>=2.25.0
|
|
|
|
| 1 |
gradio==4.19.2
|
| 2 |
+
openai==1.12.0
|
| 3 |
+
Pillow==10.2.0
|
|
|
|
|
|