XAI / app.py
strelizi's picture
Update app.py
7eda223 verified
import torch
import torch.nn as nn
from torchvision import models, transforms
from PIL import Image
import gradio as gr
from captum.attr import LayerGradCam
import numpy as np
import matplotlib.pyplot as plt
from io import BytesIO
import urllib.request
from torch.nn.functional import interpolate
import warnings
warnings.filterwarnings('ignore')
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
@torch.no_grad()
def load_model_and_labels():
"""Load ResNet152 model for maximum accuracy"""
print("πŸš€ Loading ResNet152 model...")
# ResNet152 (Best accuracy in ResNet family)
model = models.resnet152(weights='IMAGENET1K_V2')
model.eval().to(DEVICE)
# Load ImageNet labels
url = "https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt"
response = urllib.request.urlopen(url)
labels = [line.decode('utf-8').strip() for line in response.readlines()]
print("βœ… Model loaded successfully!")
return model, labels
model, IMAGENET_LABELS = load_model_and_labels()
# Setup Grad-CAM
target_layer = model.layer4[-1]
gradcam = LayerGradCam(model, target_layer)
# Transform for ResNet152
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
def predict_and_explain(image):
if image is None:
return "Please upload an image", None, None
try:
# Prepare input
img_tensor = transform(image).unsqueeze(0).to(DEVICE)
with torch.no_grad():
# ResNet152 prediction
output = model(img_tensor)
probabilities = torch.softmax(output, dim=1)
top10_prob, top10_idx = torch.topk(probabilities, 10)
pred_class = top10_idx[0][0].item()
confidence = top10_prob[0][0].item()
# Generate Grad-CAM
attributions = gradcam.attribute(img_tensor, target=pred_class)
attr_resized = interpolate(attributions, size=(224, 224), mode='bilinear', align_corners=False)
attr_np = attr_resized.squeeze().cpu().detach().numpy()
attr_np = (attr_np - attr_np.min()) / (attr_np.max() - attr_np.min() + 1e-8)
# Main visualization
fig = plt.figure(figsize=(24, 14))
fig.patch.set_facecolor('#0a0a0a')
gs = fig.add_gridspec(2, 3, height_ratios=[2, 1], hspace=0.3, wspace=0.15)
ax1 = fig.add_subplot(gs[0, 0])
ax2 = fig.add_subplot(gs[0, 1])
ax3 = fig.add_subplot(gs[0, 2])
ax4 = fig.add_subplot(gs[1, :])
ax1.imshow(image)
ax1.set_title("Original Image", fontsize=18, fontweight='700', color='#e0e0e0', pad=20)
ax1.axis('off')
im = ax2.imshow(attr_np, cmap='jet', interpolation='bilinear')
ax2.set_title("Grad-CAM Heatmap", fontsize=18, fontweight='700', color='#e0e0e0', pad=20)
ax2.axis('off')
cbar = plt.colorbar(im, ax=ax2, fraction=0.046, pad=0.04)
cbar.ax.tick_params(labelsize=12, colors='#a0a0a0')
cbar.set_label('Importance', rotation=270, labelpad=25, color='#e0e0e0', fontsize=13, fontweight='600')
ax3.imshow(image)
ax3.imshow(attr_np, cmap='jet', alpha=0.5, interpolation='bilinear')
ax3.set_title(f"AI Focus: {IMAGENET_LABELS[pred_class]}", fontsize=18, fontweight='700', color='#e0e0e0', pad=20)
ax3.axis('off')
top10_labels = [IMAGENET_LABELS[idx.item()] for idx in top10_idx[0]]
top10_probs = [prob.item() * 100 for prob in top10_prob[0]]
colors = ['#10b981' if i == 9 else '#3b82f6' if i >= 7 else '#8b5cf6' for i in range(10)]
bars = ax4.barh(range(10), top10_probs[::-1], color=colors[::-1], edgecolor='#1a1a1a', linewidth=2)
ax4.set_yticks(range(10))
ax4.set_yticklabels(top10_labels[::-1], fontsize=14, color='#e0e0e0', fontweight='600')
ax4.set_xlabel('Confidence (%)', fontsize=15, color='#e0e0e0', fontweight='700')
ax4.set_title('Top 10 Predictions', fontsize=19, fontweight='800', color='#e0e0e0', pad=20)
ax4.set_xlim([0, 100])
ax4.grid(axis='x', alpha=0.2, color='#404040', linestyle='--')
ax4.set_facecolor('#0a0a0a')
ax4.spines['top'].set_visible(False)
ax4.spines['right'].set_visible(False)
ax4.spines['left'].set_color('#404040')
ax4.spines['bottom'].set_color('#404040')
ax4.tick_params(colors='#a0a0a0', labelsize=13)
for bar, prob in zip(bars, top10_probs[::-1]):
ax4.text(prob + 1.5, bar.get_y() + bar.get_height()/2,
f'{prob:.1f}%', va='center', fontsize=13, color='#e0e0e0', fontweight='700')
plt.tight_layout()
buf = BytesIO()
plt.savefig(buf, format='png', dpi=150, bbox_inches='tight', facecolor='#0a0a0a')
buf.seek(0)
result_image = Image.open(buf)
plt.close(fig)
# Detailed heatmap analysis
fig2, axes = plt.subplots(2, 2, figsize=(20, 18))
fig2.patch.set_facecolor('#0a0a0a')
axes[0, 0].imshow(image)
axes[0, 0].set_title("Original Image", fontsize=17, fontweight='700', color='#e0e0e0', pad=15)
axes[0, 0].axis('off')
axes[0, 1].imshow(image)
axes[0, 1].imshow(attr_np, cmap='jet', alpha=0.6, interpolation='bilinear')
axes[0, 1].set_title("Jet Colormap Overlay", fontsize=17, fontweight='700', color='#e0e0e0', pad=15)
axes[0, 1].axis('off')
axes[1, 0].imshow(image)
axes[1, 0].imshow(attr_np, cmap='hot', alpha=0.6, interpolation='bilinear')
axes[1, 0].set_title("Hot Colormap Overlay", fontsize=17, fontweight='700', color='#e0e0e0', pad=15)
axes[1, 0].axis('off')
axes[1, 1].imshow(image)
axes[1, 1].imshow(attr_np, cmap='viridis', alpha=0.6, interpolation='gaussian')
axes[1, 1].contour(attr_np, levels=6, colors='white', linewidths=2, alpha=0.9)
axes[1, 1].set_title("Viridis + Contours", fontsize=17, fontweight='700', color='#e0e0e0', pad=15)
axes[1, 1].axis('off')
plt.tight_layout()
buf2 = BytesIO()
plt.savefig(buf2, format='png', dpi=140, bbox_inches='tight', facecolor='#0a0a0a')
buf2.seek(0)
detailed_heatmap = Image.open(buf2)
plt.close(fig2)
# Prediction card
badge = "high" if confidence > 0.8 else "medium" if confidence > 0.5 else "low"
badge_text = "High Confidence" if confidence > 0.8 else "Medium Confidence" if confidence > 0.5 else "Low Confidence"
badge_icon = "🎯" if confidence > 0.8 else "⚑" if confidence > 0.5 else "⚠️"
top5_html = "<div class='top5-grid'>"
icons = ["πŸ₯‡", "πŸ₯ˆ", "πŸ₯‰", "4️⃣", "5️⃣"]
for i, (prob, idx) in enumerate(zip(top10_prob[0][:5], top10_idx[0][:5])):
pct = prob.item() * 100
top5_html += f"""
<div class='top5-row'>
<span class='rank'>{icons[i]}</span>
<span class='label'>{IMAGENET_LABELS[idx.item()]}</span>
<div class='bar-wrap'><div class='bar' style='width:{pct}%'></div></div>
<span class='pct'>{pct:.2f}%</span>
</div>"""
top5_html += "</div>"
prediction_text = f"""
<div class="result-card">
<div class="pred-header">
<h2 class="pred-label">{IMAGENET_LABELS[pred_class]}</h2>
<div class="badge badge-{badge}">{badge_icon} {badge_text}</div>
</div>
<div class="conf-score">{confidence*100:.2f}%</div>
<div class="model-tag">πŸ”¬ ResNet152 Architecture (82.3% ImageNet Accuracy)</div>
<div class="divider"></div>
{top5_html}
</div>"""
return prediction_text, result_image, detailed_heatmap
except Exception as e:
return f"<div class='error-msg'>⚠️ Error: {str(e)}</div>", None, None
custom_css = """
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700;800;900&display=swap');
* { box-sizing: border-box; margin: 0; padding: 0; }
body, .gradio-container { margin: 0 !important; padding: 0 !important; width: 100vw !important; min-height: 100vh !important; max-width: 100vw !important; background: linear-gradient(135deg, #0a0a0a 0%, #1a1a1a 50%, #0f0f0f 100%) !important; font-family: 'Inter', sans-serif !important; color: #e0e0e0 !important; overflow-x: hidden !important; }
.gradio-container { padding: 0 !important; }
.main-wrapper { padding: 1.5rem; max-width: 1920px; margin: 0 auto; position: relative; z-index: 2; }
.hero-header { text-align: center; padding: 2rem 1rem 1.5rem; margin-bottom: 1.5rem; position: relative; }
.hero-header h1 { font-size: clamp(2rem, 5vw, 3.5rem); font-weight: 900; background-color: #d8b4fe; -webkit-background-clip: text; -webkit-text-fill-color: transparent; margin: 0 0 0.5rem; letter-spacing: -1px; }
.hero-header .subtitle { font-size: clamp(0.95rem, 2vw, 1.2rem); color: #808080; font-weight: 400; margin: 0 0 0.5rem; }
.hero-header .model-tag { display: inline-block; background: #93c5fd; border: 1px solid rgba(59, 130, 246, 0.3); color: #3b82f6; padding: 0.5rem 1.5rem; border-radius: 50px; font-size: 0.85rem; font-weight: 700; letter-spacing: 0.5px; margin-top: 0.5rem; }
.top-section { display: grid; grid-template-columns: 400px 1fr; gap: 1.25rem; margin-bottom: 1.25rem; }
.upload-panel, .results-panel, .viz-section { background: rgba(20, 20, 20, 0.8); border: 1px solid rgba(255, 255, 255, 0.1); border-radius: 24px; padding: 1.5rem; backdrop-filter: blur(20px); box-shadow: 0 8px 32px rgba(0, 0, 0, 0.4); }
.section-label { font-size: 1.1rem; font-weight: 700; background: #93c5fd; -webkit-background-clip: text; -webkit-text-fill-color: transparent; margin: 0 0 1rem; text-align: center; letter-spacing: 0.5px; }
#input-image { border: 2px dashed rgba(59, 130, 246, 0.4) !important; border-radius: 20px !important; background: rgba(10, 10, 10, 0.6) !important; height: 320px !important; transition: all 0.3s ease; }
#input-image:hover { border-color: #3b82f6 !important; background: rgba(20, 20, 30, 0.8) !important; transform: scale(1.02); box-shadow: 0 0 30px rgba(59, 130, 246, 0.2); }
#input-image .upload-text { border-radius: 0 !important; }
#input-image [data-testid="image"] { border-radius: 0 !important; }
.btn-row { display: flex; gap: 0.75rem; margin-top: 1rem; }
.gr-button { border-radius: 14px !important; font-weight: 700 !important; height: 50px !important; font-size: 0.95rem !important; transition: all 0.3s ease !important; border: none !important; letter-spacing: 0.5px; text-transform: uppercase; }
.gr-button-primary { background: linear-gradient(135deg, #3b82f6, #8b5cf6) !important; color: white !important; box-shadow: 0 4px 20px rgba(59, 130, 246, 0.4) !important; }
.gr-button-primary:hover { transform: translateY(-3px) !important; box-shadow: 0 8px 30px rgba(59, 130, 246, 0.6) !important; }
.gr-button-secondary { background: rgba(40, 40, 40, 0.8) !important; color: #a0a0a0 !important; border: 1px solid rgba(255, 255, 255, 0.1) !important; }
.pred-header { display: flex; align-items: center; justify-content: space-between; flex-wrap: wrap; gap: 1rem; margin-bottom: 0.75rem; }
.pred-label { font-size: clamp(1.5rem, 3vw, 2rem); font-weight: 900; color: #ffffff; margin: 0; letter-spacing: -0.5px; }
.badge { padding: 0.5rem 1.25rem; border-radius: 50px; font-size: 0.875rem; font-weight: 700; text-transform: uppercase; letter-spacing: 0.5px; box-shadow: 0 4px 15px rgba(0, 0, 0, 0.3); }
.badge-high { background: linear-gradient(135deg, #10b981, #059669); color: white; }
.badge-medium { background: linear-gradient(135deg, #f59e0b, #d97706); color: white; }
.badge-low { background: linear-gradient(135deg, #ef4444, #dc2626); color: white; }
.conf-score { font-size: clamp(2rem, 5vw, 3rem); font-weight: 900; background: linear-gradient(135deg, #3b82f6, #8b5cf6); -webkit-background-clip: text; -webkit-text-fill-color: transparent; margin-bottom: 1rem; letter-spacing: -1px; }
.model-tag { background: rgba(16, 185, 129, 0.15); border: 1px solid rgba(16, 185, 129, 0.3); color: #10b981; padding: 0.5rem 1rem; border-radius: 12px; font-size: 0.8rem; font-weight: 700; text-align: center; margin-bottom: 1rem; }
.divider { height: 2px; background: linear-gradient(90deg, transparent, rgba(59, 130, 246, 0.3), transparent); margin: 1.5rem 0; }
.top5-grid { display: flex; flex-direction: column; gap: 0.875rem; }
.top5-row { display: grid; grid-template-columns: 40px 1fr auto 80px; align-items: center; gap: 0.875rem; font-size: 0.95rem; padding: 0.5rem; border-radius: 12px; background: rgba(30, 30, 30, 0.5); transition: all 0.3s ease; }
.top5-row:hover { background: rgba(40, 40, 40, 0.7); transform: translateX(5px); }
.rank { font-size: 1.5rem; text-align: center; }
.label { color: #e0e0e0; font-weight: 600; white-space: nowrap; overflow: hidden; text-overflow: ellipsis; }
.bar-wrap { background: rgba(40, 40, 40, 0.8); height: 10px; border-radius: 5px; overflow: hidden; min-width: 100px; box-shadow: inset 0 2px 4px rgba(0, 0, 0, 0.3); }
.bar { background: linear-gradient(90deg, #3b82f6, #8b5cf6); height: 100%; transition: width 1s ease; border-radius: 5px; box-shadow: 0 0 10px rgba(59, 130, 246, 0.5); }
.pct { color: #3b82f6; font-weight: 700; font-size: 0.9rem; text-align: right; }
#result-image, #detailed-heatmap { border-radius: 16px !important; overflow: hidden; width: 100% !important; height: auto !important; min-height: 500px !important; box-shadow: 0 8px 32px rgba(0, 0, 0, 0.5); object-fit: contain !important; }
.placeholder { text-align: center; padding: 4rem 1.5rem; color: #606060; font-size: 1.1rem; line-height: 1.6; }
.placeholder strong { color: #3b82f6; }
.error-msg { color: #ef4444; background: rgba(239, 68, 68, 0.1); padding: 1.5rem; border-radius: 16px; text-align: center; border: 1px solid rgba(239, 68, 68, 0.3); }
footer, .footer { display: none !important; }
::-webkit-scrollbar { width: 10px; }
::-webkit-scrollbar-track { background: rgba(20, 20, 20, 0.5); }
::-webkit-scrollbar-thumb { background: rgba(59, 130, 246, 0.5); border-radius: 5px; }
@media (max-width: 768px) {
.top-section { grid-template-columns: 1fr; }
#input-image { height: 240px !important; }
.top5-row { grid-template-columns: 35px 1fr 70px; }
.bar-wrap { grid-column: 1 / -1; margin-top: 0.375rem; }
#result-image { min-height: 600px !important; max-height: none !important; }
#detailed-heatmap { min-height: 450px !important; max-height: none !important; }
.viz-section { padding: 1rem; }
.section-label { font-size: 1rem; }
}
@media (max-width: 480px) {
.main-wrapper { padding: 1rem; }
#result-image { min-height: 550px !important; }
#detailed-heatmap { min-height: 400px !important; }
}
"""
with gr.Blocks(css=custom_css, theme=gr.themes.Base(), title="XAI Image Classifier") as demo:
gr.HTML('<link rel="icon" href="https://res.cloudinary.com/ddn0xuwut/image/upload/v1761284764/encryption_hc0fxo.png" type="image/png">')
with gr.Column(elem_classes="main-wrapper"):
gr.HTML('''
<div class="hero-header">
<h1>XAI Image Classifier</h1>
<p class="subtitle">ResNet152 with Grad-CAM Explainability</p>
<div class="model-tag">⚑ Maximum Accuracy Production Version</div>
</div>
''')
with gr.Row(elem_classes="top-section"):
with gr.Column(scale=0, min_width=400, elem_classes="upload-panel"):
gr.HTML("<div class='section-label'>πŸ“€ Upload Image</div>")
input_image = gr.Image(type="pil", label=None, elem_id="input-image", show_label=False, container=False)
with gr.Row(elem_classes="btn-row"):
predict_btn = gr.Button("πŸš€ Analyze", variant="primary", size="lg", scale=2)
clear_btn = gr.ClearButton([input_image], value="πŸ—‘οΈ Clear", size="lg", scale=1)
with gr.Column(scale=1, elem_classes="results-panel"):
output_text = gr.HTML('<div class="placeholder"><strong>πŸ‘‹ Welcome to XAI Classifier!</strong><br><br>This classifier uses ResNet152:<br>β€’ 82.3% ImageNet Top-1 Accuracy<br>β€’ Grad-CAM Visual Explainability<br>β€’ 1000 Object Categories<br><br>Upload an image to see the magic! ✨</div>')
with gr.Column(elem_classes="viz-section"):
gr.HTML("<div class='section-label'>🎯 Visual Explainability Analysis</div>")
output_image = gr.Image(label=None, type="pil", show_label=False, elem_id="result-image", container=False)
with gr.Column(elem_classes="viz-section"):
gr.HTML("<div class='section-label'>πŸ”¬ Detailed Heatmap Comparison</div>")
detailed_heatmap = gr.Image(label=None, type="pil", show_label=False, elem_id="detailed-heatmap", container=False)
predict_btn.click(fn=predict_and_explain, inputs=[input_image], outputs=[output_text, output_image, detailed_heatmap])
if __name__ == "__main__":
demo.launch(share=False, show_error=True)