Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,113 +1,154 @@
|
|
| 1 |
-
# app.py — NL→SQL (TAPEX + WikiSQL) backend (solo API)
|
| 2 |
-
|
| 3 |
from fastapi import FastAPI, HTTPException
|
| 4 |
from fastapi.middleware.cors import CORSMiddleware
|
| 5 |
-
from fastapi.responses import JSONResponse
|
| 6 |
from pydantic import BaseModel
|
| 7 |
-
|
| 8 |
-
import os
|
| 9 |
-
import torch
|
| 10 |
-
import pandas as pd
|
| 11 |
from functools import lru_cache
|
| 12 |
-
|
| 13 |
-
from datasets import load_dataset
|
| 14 |
-
from deep_translator import GoogleTranslator
|
| 15 |
from transformers import TapexTokenizer, BartForConditionalGeneration
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
#
|
|
|
|
|
|
|
| 18 |
HF_MODEL_ID = os.getenv("HF_MODEL_ID", "stvnnnnnn/tapex-wikisql-best")
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
# ------------ App & CORS ------------
|
| 28 |
app = FastAPI(title="NL→SQL – TAPEX + WikiSQL (API)")
|
| 29 |
app.add_middleware(
|
| 30 |
CORSMiddleware,
|
| 31 |
-
allow_origins=["*"],
|
| 32 |
-
allow_credentials=True,
|
| 33 |
-
allow_methods=["*"],
|
| 34 |
-
allow_headers=["*"],
|
| 35 |
)
|
| 36 |
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
@lru_cache(maxsize=32)
|
| 46 |
-
def
|
| 47 |
"""
|
| 48 |
-
Carga tabla de WikiSQL usando
|
| 49 |
-
|
|
|
|
|
|
|
| 50 |
"""
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
#
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
#
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
df = pd.DataFrame(rows, columns=header)
|
| 71 |
df.columns = [str(c) for c in df.columns]
|
| 72 |
return df
|
| 73 |
|
| 74 |
-
#
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
# ------------ Endpoints ------------
|
| 79 |
@app.get("/api/health")
|
| 80 |
def health():
|
| 81 |
-
return {"ok": True, "model": HF_MODEL_ID, "split":
|
| 82 |
|
| 83 |
@app.get("/api/preview")
|
| 84 |
def preview():
|
| 85 |
try:
|
| 86 |
-
df =
|
| 87 |
-
return {"columns":
|
| 88 |
except Exception as e:
|
| 89 |
-
return
|
| 90 |
|
| 91 |
@app.post("/api/nl2sql")
|
| 92 |
def nl2sql(q: NLQuery):
|
| 93 |
-
nl = (q.nl_query or "").strip()
|
| 94 |
-
if not nl:
|
| 95 |
-
raise HTTPException(status_code=400, detail="Consulta vacía.")
|
| 96 |
-
|
| 97 |
-
# Traducción ES→EN si no-ASCII
|
| 98 |
-
try:
|
| 99 |
-
is_ascii = all(ord(c) < 128 for c in nl)
|
| 100 |
-
nl_en = nl if is_ascii else GoogleTranslator(source="auto", target="en").translate(nl)
|
| 101 |
-
except Exception:
|
| 102 |
-
nl_en = nl
|
| 103 |
-
|
| 104 |
try:
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
sql = tok.batch_decode(out, skip_special_tokens=True)[0]
|
| 111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
except Exception as e:
|
| 113 |
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
|
|
|
|
|
| 1 |
from fastapi import FastAPI, HTTPException
|
| 2 |
from fastapi.middleware.cors import CORSMiddleware
|
|
|
|
| 3 |
from pydantic import BaseModel
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
from functools import lru_cache
|
| 5 |
+
from huggingface_hub import hf_hub_download
|
|
|
|
|
|
|
| 6 |
from transformers import TapexTokenizer, BartForConditionalGeneration
|
| 7 |
+
from deep_translator import GoogleTranslator
|
| 8 |
+
import os, json, pandas as pd, torch
|
| 9 |
|
| 10 |
+
# ------------------------
|
| 11 |
+
# Config
|
| 12 |
+
# ------------------------
|
| 13 |
HF_MODEL_ID = os.getenv("HF_MODEL_ID", "stvnnnnnn/tapex-wikisql-best")
|
| 14 |
+
WIKISQL_REPO = os.getenv("WIKISQL_REPO", "Salesforce/wikisql") # dataset oficial
|
| 15 |
+
SPLIT = os.getenv("TABLE_SPLIT", "validation") # "validation" == dev en WikiSQL
|
| 16 |
+
INDEX = int(os.getenv("TABLE_INDEX", "10"))
|
| 17 |
+
MAX_ROWS = int(os.getenv("MAX_ROWS", "12"))
|
| 18 |
+
|
| 19 |
+
# ------------------------
|
| 20 |
+
# App
|
| 21 |
+
# ------------------------
|
|
|
|
| 22 |
app = FastAPI(title="NL→SQL – TAPEX + WikiSQL (API)")
|
| 23 |
app.add_middleware(
|
| 24 |
CORSMiddleware,
|
| 25 |
+
allow_origins=["*"], allow_methods=["*"], allow_headers=["*"], allow_credentials=True,
|
|
|
|
|
|
|
|
|
|
| 26 |
)
|
| 27 |
|
| 28 |
+
class NLQuery(BaseModel):
|
| 29 |
+
nl_query: str
|
| 30 |
+
|
| 31 |
+
# ------------------------
|
| 32 |
+
# Modelo
|
| 33 |
+
# ------------------------
|
| 34 |
+
tok = TapexTokenizer.from_pretrained(HF_MODEL_ID)
|
| 35 |
+
model = BartForConditionalGeneration.from_pretrained(HF_MODEL_ID)
|
| 36 |
+
if torch.cuda.is_available():
|
| 37 |
+
model = model.to("cuda")
|
| 38 |
+
|
| 39 |
+
# ------------------------
|
| 40 |
+
# Util: carga WikiSQL (JSONL)
|
| 41 |
+
# ------------------------
|
| 42 |
+
def _read_jsonl(path):
|
| 43 |
+
with open(path, "r", encoding="utf-8") as f:
|
| 44 |
+
for line in f:
|
| 45 |
+
if line.strip():
|
| 46 |
+
yield json.loads(line)
|
| 47 |
+
|
| 48 |
+
def _download_file(filename: str) -> str:
|
| 49 |
+
# descarga desde el dataset hug
|
| 50 |
+
return hf_hub_download(repo_id=WIKISQL_REPO, filename=filename, repo_type="dataset")
|
| 51 |
|
| 52 |
@lru_cache(maxsize=32)
|
| 53 |
+
def get_table_from_wikisql(split: str, index: int, max_rows: int) -> pd.DataFrame:
|
| 54 |
"""
|
| 55 |
+
Carga la tabla de WikiSQL sin scripts, usando directamente los JSONL del repo:
|
| 56 |
+
- dev.jsonl (validation = 'dev' en terminología original)
|
| 57 |
+
- dev.tables.jsonl
|
| 58 |
+
Si cambias split a 'train' o 'test', intenta los nombres equivalentes.
|
| 59 |
"""
|
| 60 |
+
# Mapeo simple: validation->dev, train->train, test->test
|
| 61 |
+
split_map = {"validation": "dev", "dev": "dev", "train": "train", "test": "test"}
|
| 62 |
+
base = split_map.get(split.lower(), "dev")
|
| 63 |
+
|
| 64 |
+
# Posibles nombres de archivo en el repo (algunos mirrors usan variantes)
|
| 65 |
+
qa_candidates = [f"data/{base}.jsonl", f"data/{base}.json", f"{base}.jsonl"]
|
| 66 |
+
tbl_candidates = [f"data/{base}.tables.jsonl", f"{base}.tables.jsonl"]
|
| 67 |
+
|
| 68 |
+
qa_path = None
|
| 69 |
+
tbl_path = None
|
| 70 |
+
|
| 71 |
+
# Descarga QA
|
| 72 |
+
for cand in qa_candidates:
|
| 73 |
+
try:
|
| 74 |
+
qa_path = _download_file(cand)
|
| 75 |
+
break
|
| 76 |
+
except Exception:
|
| 77 |
+
continue
|
| 78 |
+
if qa_path is None:
|
| 79 |
+
raise RuntimeError(f"No se encontró el archivo QA para split={split}. Intentos: {qa_candidates}")
|
| 80 |
+
|
| 81 |
+
# Descarga tablas
|
| 82 |
+
for cand in tbl_candidates:
|
| 83 |
+
try:
|
| 84 |
+
tbl_path = _download_file(cand)
|
| 85 |
+
break
|
| 86 |
+
except Exception:
|
| 87 |
+
continue
|
| 88 |
+
if tbl_path is None:
|
| 89 |
+
raise RuntimeError(f"No se encontró el archivo de tablas para split={split}. Intentos: {tbl_candidates}")
|
| 90 |
+
|
| 91 |
+
# Leemos la pregunta N (para tomar su table_id) — si no necesitas la pregunta, puedes omitir esto
|
| 92 |
+
qa_list = list(_read_jsonl(qa_path))
|
| 93 |
+
if not (0 <= index < len(qa_list)):
|
| 94 |
+
raise IndexError(f"index={index} fuera de rango (0..{len(qa_list)-1}) para split={split}")
|
| 95 |
+
table_id = qa_list[index].get("table_id") or qa_list[index].get("table", {}).get("id")
|
| 96 |
+
if table_id is None:
|
| 97 |
+
raise RuntimeError("No se pudo extraer 'table_id' del registro de QA.")
|
| 98 |
+
|
| 99 |
+
# Buscamos esa tabla en dev.tables.jsonl
|
| 100 |
+
header, rows = None, None
|
| 101 |
+
for obj in _read_jsonl(tbl_path):
|
| 102 |
+
if obj.get("id") == table_id:
|
| 103 |
+
header = [str(h) for h in obj["header"]]
|
| 104 |
+
rows = obj["rows"]
|
| 105 |
+
break
|
| 106 |
+
if header is None or rows is None:
|
| 107 |
+
raise RuntimeError(f"No se encontró la tabla con id={table_id} en {os.path.basename(tbl_path)}")
|
| 108 |
+
|
| 109 |
+
# recortamos filas
|
| 110 |
+
rows = rows[:max_rows]
|
| 111 |
df = pd.DataFrame(rows, columns=header)
|
| 112 |
df.columns = [str(c) for c in df.columns]
|
| 113 |
return df
|
| 114 |
|
| 115 |
+
# ------------------------
|
| 116 |
+
# Endpoints
|
| 117 |
+
# ------------------------
|
|
|
|
|
|
|
| 118 |
@app.get("/api/health")
|
| 119 |
def health():
|
| 120 |
+
return {"ok": True, "model": HF_MODEL_ID, "split": SPLIT, "index": INDEX}
|
| 121 |
|
| 122 |
@app.get("/api/preview")
|
| 123 |
def preview():
|
| 124 |
try:
|
| 125 |
+
df = get_table_from_wikisql(SPLIT, INDEX, MAX_ROWS)
|
| 126 |
+
return {"columns": df.columns.tolist(), "rows": df.head(8).to_dict(orient="records")}
|
| 127 |
except Exception as e:
|
| 128 |
+
return {"error": str(e)}
|
| 129 |
|
| 130 |
@app.post("/api/nl2sql")
|
| 131 |
def nl2sql(q: NLQuery):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
try:
|
| 133 |
+
text = (q.nl_query or "").strip()
|
| 134 |
+
if not text:
|
| 135 |
+
raise ValueError("Consulta vacía.")
|
| 136 |
+
|
| 137 |
+
# Traducción ES->EN si detectamos acentos u otros
|
| 138 |
+
is_ascii = all(ord(c) < 128 for c in text)
|
| 139 |
+
query_en = text if is_ascii else GoogleTranslator(source="auto", target="en").translate(text)
|
| 140 |
+
|
| 141 |
+
df = get_table_from_wikisql(SPLIT, INDEX, MAX_ROWS)
|
| 142 |
+
enc = tok(table=df, query=query_en, return_tensors="pt", truncation=True)
|
| 143 |
+
if torch.cuda.is_available():
|
| 144 |
+
enc = {k: v.to("cuda") for k, v in enc.items()}
|
| 145 |
+
out = model.generate(**enc, max_length=160, num_beams=1)
|
| 146 |
sql = tok.batch_decode(out, skip_special_tokens=True)[0]
|
| 147 |
+
|
| 148 |
+
return {
|
| 149 |
+
"consulta_original": text,
|
| 150 |
+
"consulta_traducida": query_en,
|
| 151 |
+
"sql_generado": sql
|
| 152 |
+
}
|
| 153 |
except Exception as e:
|
| 154 |
raise HTTPException(status_code=500, detail=str(e))
|