stvnnnnnn commited on
Commit
9c83e37
·
verified ·
1 Parent(s): 070cde5

App creada

Browse files
Files changed (1) hide show
  1. app.py +75 -0
app.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastapi import FastAPI, HTTPException
2
+ from fastapi.middleware.cors import CORSMiddleware
3
+ from pydantic import BaseModel
4
+ from deep_translator import GoogleTranslator
5
+ from datasets import load_dataset
6
+ from transformers import TapexTokenizer, BartForConditionalGeneration
7
+ import pandas as pd, torch, os
8
+
9
+ # === Config ===
10
+ HF_MODEL_ID = os.getenv("HF_MODEL_ID", "stvnnnnnn/tapex-wikisql-best")
11
+ TABLE_SPLIT = os.getenv("TABLE_SPLIT", "validation")
12
+ TABLE_INDEX = int(os.getenv("TABLE_INDEX", "10"))
13
+ MAX_ROWS = int(os.getenv("MAX_ROWS", "12"))
14
+
15
+ torch.set_num_threads(1)
16
+
17
+ app = FastAPI(title="NL→SQL – TAPEX + WikiSQL (HF Space)")
18
+
19
+ # CORS: permite que Vercel (o cualquier origen) consuma la API
20
+ app.add_middleware(
21
+ CORSMiddleware,
22
+ allow_origins=["*"], allow_credentials=False,
23
+ allow_methods=["*"], allow_headers=["*"],
24
+ )
25
+
26
+ # Carga modelo/tokenizer con bajo pico de RAM (CPU)
27
+ tok = TapexTokenizer.from_pretrained(HF_MODEL_ID)
28
+ model = BartForConditionalGeneration.from_pretrained(
29
+ HF_MODEL_ID, low_cpu_mem_usage=True
30
+ ).to("cpu")
31
+
32
+ class NLQuery(BaseModel):
33
+ nl_query: str
34
+
35
+ def get_example(split, index):
36
+ # streaming para no cargar todo WikiSQL en RAM
37
+ ds = load_dataset("Salesforce/wikisql", split=split, streaming=True)
38
+ for i, ex in enumerate(ds):
39
+ if i == index:
40
+ return ex
41
+ raise IndexError("Index fuera de rango")
42
+
43
+ def load_table(split=TABLE_SPLIT, index=TABLE_INDEX, max_rows=MAX_ROWS):
44
+ ex = get_example(split, index)
45
+ header = [str(h) for h in ex["table"]["header"]]
46
+ rows = ex["table"]["rows"][:max_rows]
47
+ return pd.DataFrame(rows, columns=header)
48
+
49
+ @app.get("/api/health")
50
+ def health():
51
+ return {"ok": True, "model": HF_MODEL_ID, "split": TABLE_SPLIT, "index": TABLE_INDEX}
52
+
53
+ @app.get("/api/preview")
54
+ def preview():
55
+ df = load_table()
56
+ return {"columns": df.columns.tolist(), "rows": df.head(8).to_dict(orient="records")}
57
+
58
+ @app.post("/api/nl2sql")
59
+ def nl2sql(q: NLQuery):
60
+ try:
61
+ text = (q.nl_query or "").strip()
62
+ if not text:
63
+ raise ValueError("Consulta vacía.")
64
+
65
+ is_ascii = all(ord(c) < 128 for c in text)
66
+ query_en = text if is_ascii else GoogleTranslator(source="auto", target="en").translate(text)
67
+
68
+ df = load_table()
69
+ enc = tok(table=df, query=query_en, return_tensors="pt", truncation=True)
70
+ out = model.generate(**enc, max_length=160, num_beams=1)
71
+ sql = tok.batch_decode(out, skip_special_tokens=True)[0]
72
+
73
+ return {"consulta_original": text, "consulta_traducida": query_en, "sql_generado": sql}
74
+ except Exception as e:
75
+ raise HTTPException(status_code=500, detail=str(e))