File size: 14,437 Bytes
8822914
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
import os
from typing import TYPE_CHECKING, List, Optional

import torch
import yaml
from toolkit import train_tools
from toolkit.config_modules import GenerateImageConfig, ModelConfig
from PIL import Image
from toolkit.models.base_model import BaseModel
from toolkit.basic import flush
from toolkit.prompt_utils import PromptEmbeds
from toolkit.samplers.custom_flowmatch_sampler import CustomFlowMatchEulerDiscreteScheduler
from toolkit.accelerator import get_accelerator, unwrap_model
from optimum.quanto import freeze, QTensor
from toolkit.util.quantize import quantize, get_qtype, quantize_model
import torch.nn.functional as F

from diffusers import QwenImagePipeline, QwenImageTransformer2DModel, AutoencoderKLQwenImage
from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2Tokenizer, Qwen2VLProcessor
from tqdm import tqdm

if TYPE_CHECKING:
    from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO

scheduler_config = {
  "base_image_seq_len": 256,
  "base_shift": 0.5,
  "invert_sigmas": False,
  "max_image_seq_len": 8192,
  "max_shift": 0.9,
  "num_train_timesteps": 1000,
  "shift": 1.0,
  "shift_terminal": 0.02,
  "stochastic_sampling": False,
  "time_shift_type": "exponential",
  "use_beta_sigmas": False,
  "use_dynamic_shifting": True,
  "use_exponential_sigmas": False,
  "use_karras_sigmas": False
}



class QwenImageModel(BaseModel):
    arch = "qwen_image"
    _qwen_image_keep_visual = False
    _qwen_pipeline = QwenImagePipeline

    def __init__(
            self,
            device,
            model_config: ModelConfig,
            dtype='bf16',
            custom_pipeline=None,
            noise_scheduler=None,
            **kwargs
    ):
        super().__init__(
            device,
            model_config,
            dtype,
            custom_pipeline,
            noise_scheduler,
            **kwargs
        )
        self.is_flow_matching = True
        self.is_transformer = True
        self.target_lora_modules = ['QwenImageTransformer2DModel']

    # static method to get the noise scheduler
    @staticmethod
    def get_train_scheduler():
        return CustomFlowMatchEulerDiscreteScheduler(**scheduler_config)

    def get_bucket_divisibility(self):
        return 16 * 2 # 16 for the VAE, 2 for patch size

    def load_model(self):
        dtype = self.torch_dtype
        self.print_and_status_update("Loading Qwen Image model")
        model_path = self.model_config.name_or_path
        base_model_path = self.model_config.extras_name_or_path

        transformer_path = model_path
        transformer_subfolder = 'transformer'
        if os.path.exists(transformer_path):
            transformer_subfolder = None
            transformer_path = os.path.join(transformer_path, 'transformer')
            # check if the path is a full checkpoint.
            te_folder_path = os.path.join(model_path, 'text_encoder')
            # if we have the te, this folder is a full checkpoint, use it as the base
            if os.path.exists(te_folder_path):
                base_model_path = model_path

        self.print_and_status_update("Loading transformer")
        transformer = QwenImageTransformer2DModel.from_pretrained(
            transformer_path,
            subfolder=transformer_subfolder,
            torch_dtype=dtype
        )

        if self.model_config.quantize:
            self.print_and_status_update("Quantizing Transformer")
            quantize_model(self, transformer)
            flush()
        
        if self.model_config.low_vram:
            self.print_and_status_update("Moving transformer to CPU")
            transformer.to('cpu')

        flush()

        self.print_and_status_update("Text Encoder")
        tokenizer = Qwen2Tokenizer.from_pretrained(
            base_model_path, subfolder="tokenizer", torch_dtype=dtype
        )
        text_encoder = Qwen2_5_VLForConditionalGeneration.from_pretrained(
            base_model_path, subfolder="text_encoder", torch_dtype=dtype
        )
        
        # remove the visual model as it is not needed for image generation
        self.processor = None
        if not self._qwen_image_keep_visual:
            text_encoder.model.visual = None

        text_encoder.to(self.device_torch, dtype=dtype)
        flush()

        if self.model_config.quantize_te:
            self.print_and_status_update("Quantizing Text Encoder")
            quantize(text_encoder, weights=get_qtype(
                self.model_config.qtype_te))
            freeze(text_encoder)
            flush()

        self.print_and_status_update("Loading VAE")
        vae = AutoencoderKLQwenImage.from_pretrained(
            base_model_path, subfolder="vae", torch_dtype=dtype)

        self.noise_scheduler = QwenImageModel.get_train_scheduler()

        self.print_and_status_update("Making pipe")
        
        kwargs = {}
        
        if self._qwen_image_keep_visual:
            try:
                self.processor = Qwen2VLProcessor.from_pretrained(
                    model_path, subfolder="processor"
                )
            except OSError:
                self.processor = Qwen2VLProcessor.from_pretrained(
                    base_model_path, subfolder="processor"
                )
            kwargs['processor'] = self.processor

        pipe: QwenImagePipeline = self._qwen_pipeline(
            scheduler=self.noise_scheduler,
            text_encoder=None,
            tokenizer=tokenizer,
            vae=vae,
            transformer=None,
            **kwargs
        )
        # for quantization, it works best to do these after making the pipe
        pipe.text_encoder = text_encoder
        pipe.transformer = transformer

        self.print_and_status_update("Preparing Model")

        text_encoder = [pipe.text_encoder]
        tokenizer = [pipe.tokenizer]

        # leave it on cpu for now
        if not self.low_vram:
            pipe.transformer = pipe.transformer.to(self.device_torch)

        flush()
        # just to make sure everything is on the right device and dtype
        text_encoder[0].to(self.device_torch)
        text_encoder[0].requires_grad_(False)
        text_encoder[0].eval()
        flush()

        # save it to the model class
        self.vae = vae
        self.text_encoder = text_encoder  # list of text encoders
        self.tokenizer = tokenizer  # list of tokenizers
        self.model = pipe.transformer
        self.pipeline = pipe
        self.print_and_status_update("Model Loaded")

    def get_generation_pipeline(self):
        scheduler = QwenImageModel.get_train_scheduler()

        pipeline: QwenImagePipeline = QwenImagePipeline(
            scheduler=scheduler,
            text_encoder=unwrap_model(self.text_encoder[0]),
            tokenizer=self.tokenizer[0],
            vae=unwrap_model(self.vae),
            transformer=unwrap_model(self.transformer)
        )

        pipeline = pipeline.to(self.device_torch)

        return pipeline

    def generate_single_image(
        self,
        pipeline: QwenImagePipeline,
        gen_config: GenerateImageConfig,
        conditional_embeds: PromptEmbeds,
        unconditional_embeds: PromptEmbeds,
        generator: torch.Generator,
        extra: dict,
    ):
        self.model.to(self.device_torch, dtype=self.torch_dtype)
        control_img = None
        if gen_config.ctrl_img is not None:
            raise NotImplementedError(
                "Control image generation is not supported in Qwen Image model... yet"
            )
            control_img = Image.open(gen_config.ctrl_img)
            control_img = control_img.convert("RGB")
            # resize to width and height
            if control_img.size != (gen_config.width, gen_config.height):
                control_img = control_img.resize(
                    (gen_config.width, gen_config.height), Image.BILINEAR
                )
        self.model.to(self.device_torch)

        # flush for low vram if we are doing that
        flush_between_steps = self.model_config.low_vram
            # Fix a bug in diffusers/torch
        def callback_on_step_end(pipe, i, t, callback_kwargs):
            if flush_between_steps:
                flush()
            latents = callback_kwargs["latents"]
            
            return {"latents": latents}
        
        sc = self.get_bucket_divisibility()
        gen_config.width = int(gen_config.width  // sc * sc)
        gen_config.height = int(gen_config.height // sc * sc)
        img = pipeline(
            prompt_embeds=conditional_embeds.text_embeds,
            prompt_embeds_mask=conditional_embeds.attention_mask.to(self.device_torch, dtype=torch.int64),
            negative_prompt_embeds=unconditional_embeds.text_embeds,
            negative_prompt_embeds_mask=unconditional_embeds.attention_mask.to(self.device_torch, dtype=torch.int64),
            height=gen_config.height,
            width=gen_config.width,
            num_inference_steps=gen_config.num_inference_steps,
            true_cfg_scale=gen_config.guidance_scale,
            latents=gen_config.latents,
            generator=generator,
            callback_on_step_end=callback_on_step_end,
            **extra
        ).images[0]
        return img

    def get_noise_prediction(
        self,
        latent_model_input: torch.Tensor,
        timestep: torch.Tensor,  # 0 to 1000 scale
        text_embeddings: PromptEmbeds,
        **kwargs
    ):
        self.model.to(self.device_torch)
        batch_size, num_channels_latents, height, width = latent_model_input.shape
        
        ps = self.transformer.config.patch_size

        # pack image tokens
        latent_model_input = latent_model_input.view(batch_size, num_channels_latents, height // ps, ps, width // ps, ps)
        latent_model_input = latent_model_input.permute(0, 2, 4, 1, 3, 5)
        latent_model_input = latent_model_input.reshape(batch_size, (height // ps) * (width // ps), num_channels_latents * (ps * ps))

        # img_shapes passed to the model
        img_h2, img_w2 = height // ps, width // ps
        img_shapes = [[(1, img_h2, img_w2)]] * batch_size

        enc_hs = text_embeddings.text_embeds.to(self.device_torch, self.torch_dtype)
        prompt_embeds_mask = text_embeddings.attention_mask.to(self.device_torch, dtype=torch.int64)
        txt_seq_lens = prompt_embeds_mask.sum(dim=1).tolist()

        noise_pred = self.transformer(
            hidden_states=latent_model_input.to(self.device_torch, self.torch_dtype),
            timestep=timestep / 1000,
            guidance=None,
            encoder_hidden_states=enc_hs,
            encoder_hidden_states_mask=prompt_embeds_mask,
            img_shapes=img_shapes,
            txt_seq_lens=txt_seq_lens,
            return_dict=False,
            **kwargs,
        )[0]

        # unpack
        noise_pred = noise_pred.view(batch_size, height // ps, width // ps, num_channels_latents, ps, ps)
        noise_pred = noise_pred.permute(0, 3, 1, 4, 2, 5)
        noise_pred = noise_pred.reshape(batch_size, num_channels_latents, height, width)
        return noise_pred
    
    def get_prompt_embeds(self, prompt: str) -> PromptEmbeds:
        if self.pipeline.text_encoder.device != self.device_torch:
            self.pipeline.text_encoder.to(self.device_torch)
        
        prompt_embeds, prompt_embeds_mask = self.pipeline.encode_prompt(
            prompt,
            device=self.device_torch,
            num_images_per_prompt=1,
        )
        pe = PromptEmbeds(
            prompt_embeds
        )
        pe.attention_mask = prompt_embeds_mask
        return pe
    
    def get_model_has_grad(self):
        return False

    def get_te_has_grad(self):
        return False
    
    def save_model(self, output_path, meta, save_dtype):
        # only save the unet
        transformer: QwenImageTransformer2DModel = unwrap_model(self.model)
        transformer.save_pretrained(
            save_directory=os.path.join(output_path, 'transformer'),
            safe_serialization=True,
        )

        meta_path = os.path.join(output_path, 'aitk_meta.yaml')
        with open(meta_path, 'w') as f:
            yaml.dump(meta, f)

    def get_loss_target(self, *args, **kwargs):
        noise = kwargs.get('noise')
        batch = kwargs.get('batch')
        return (noise - batch.latents).detach()


    def get_base_model_version(self):
        return "qwen_image"
    
    def get_transformer_block_names(self) -> Optional[List[str]]:
        return ['transformer_blocks']
    
    def convert_lora_weights_before_save(self, state_dict):
        new_sd = {}
        for key, value in state_dict.items():
            new_key = key.replace("transformer.", "diffusion_model.")
            new_sd[new_key] = value
        return new_sd

    def convert_lora_weights_before_load(self, state_dict):
        new_sd = {}
        for key, value in state_dict.items():
            new_key = key.replace("diffusion_model.", "transformer.")
            new_sd[new_key] = value
        return new_sd
    
    def encode_images(
            self,
            image_list: List[torch.Tensor],
            device=None,
            dtype=None
    ):
        if device is None:
            device = self.vae_device_torch
        if dtype is None:
            dtype = self.vae_torch_dtype

        # Move to vae to device if on cpu
        if self.vae.device == 'cpu':
            self.vae.to(device)
        self.vae.eval()
        self.vae.requires_grad_(False)
        # move to device and dtype
        image_list = [image.to(device, dtype=dtype) for image in image_list]
        images = torch.stack(image_list).to(device, dtype=dtype)
        # it uses wan vae, so add dim for frame count

        images = images.unsqueeze(2)
        latents = self.vae.encode(images).latent_dist.sample()
        
        latents_mean = (
            torch.tensor(self.vae.config.latents_mean)
            .view(1, self.vae.config.z_dim, 1, 1, 1)
            .to(latents.device, latents.dtype)
        )
        latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
            latents.device, latents.dtype
        )
        
        latents = (latents - latents_mean) * latents_std
        latents = latents.to(device, dtype=dtype)
        
        
        latents = latents.squeeze(2)  # remove the frame count dimension

        return latents