Spaces:
Runtime error
Runtime error
File size: 14,437 Bytes
8822914 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
import os
from typing import TYPE_CHECKING, List, Optional
import torch
import yaml
from toolkit import train_tools
from toolkit.config_modules import GenerateImageConfig, ModelConfig
from PIL import Image
from toolkit.models.base_model import BaseModel
from toolkit.basic import flush
from toolkit.prompt_utils import PromptEmbeds
from toolkit.samplers.custom_flowmatch_sampler import CustomFlowMatchEulerDiscreteScheduler
from toolkit.accelerator import get_accelerator, unwrap_model
from optimum.quanto import freeze, QTensor
from toolkit.util.quantize import quantize, get_qtype, quantize_model
import torch.nn.functional as F
from diffusers import QwenImagePipeline, QwenImageTransformer2DModel, AutoencoderKLQwenImage
from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2Tokenizer, Qwen2VLProcessor
from tqdm import tqdm
if TYPE_CHECKING:
from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO
scheduler_config = {
"base_image_seq_len": 256,
"base_shift": 0.5,
"invert_sigmas": False,
"max_image_seq_len": 8192,
"max_shift": 0.9,
"num_train_timesteps": 1000,
"shift": 1.0,
"shift_terminal": 0.02,
"stochastic_sampling": False,
"time_shift_type": "exponential",
"use_beta_sigmas": False,
"use_dynamic_shifting": True,
"use_exponential_sigmas": False,
"use_karras_sigmas": False
}
class QwenImageModel(BaseModel):
arch = "qwen_image"
_qwen_image_keep_visual = False
_qwen_pipeline = QwenImagePipeline
def __init__(
self,
device,
model_config: ModelConfig,
dtype='bf16',
custom_pipeline=None,
noise_scheduler=None,
**kwargs
):
super().__init__(
device,
model_config,
dtype,
custom_pipeline,
noise_scheduler,
**kwargs
)
self.is_flow_matching = True
self.is_transformer = True
self.target_lora_modules = ['QwenImageTransformer2DModel']
# static method to get the noise scheduler
@staticmethod
def get_train_scheduler():
return CustomFlowMatchEulerDiscreteScheduler(**scheduler_config)
def get_bucket_divisibility(self):
return 16 * 2 # 16 for the VAE, 2 for patch size
def load_model(self):
dtype = self.torch_dtype
self.print_and_status_update("Loading Qwen Image model")
model_path = self.model_config.name_or_path
base_model_path = self.model_config.extras_name_or_path
transformer_path = model_path
transformer_subfolder = 'transformer'
if os.path.exists(transformer_path):
transformer_subfolder = None
transformer_path = os.path.join(transformer_path, 'transformer')
# check if the path is a full checkpoint.
te_folder_path = os.path.join(model_path, 'text_encoder')
# if we have the te, this folder is a full checkpoint, use it as the base
if os.path.exists(te_folder_path):
base_model_path = model_path
self.print_and_status_update("Loading transformer")
transformer = QwenImageTransformer2DModel.from_pretrained(
transformer_path,
subfolder=transformer_subfolder,
torch_dtype=dtype
)
if self.model_config.quantize:
self.print_and_status_update("Quantizing Transformer")
quantize_model(self, transformer)
flush()
if self.model_config.low_vram:
self.print_and_status_update("Moving transformer to CPU")
transformer.to('cpu')
flush()
self.print_and_status_update("Text Encoder")
tokenizer = Qwen2Tokenizer.from_pretrained(
base_model_path, subfolder="tokenizer", torch_dtype=dtype
)
text_encoder = Qwen2_5_VLForConditionalGeneration.from_pretrained(
base_model_path, subfolder="text_encoder", torch_dtype=dtype
)
# remove the visual model as it is not needed for image generation
self.processor = None
if not self._qwen_image_keep_visual:
text_encoder.model.visual = None
text_encoder.to(self.device_torch, dtype=dtype)
flush()
if self.model_config.quantize_te:
self.print_and_status_update("Quantizing Text Encoder")
quantize(text_encoder, weights=get_qtype(
self.model_config.qtype_te))
freeze(text_encoder)
flush()
self.print_and_status_update("Loading VAE")
vae = AutoencoderKLQwenImage.from_pretrained(
base_model_path, subfolder="vae", torch_dtype=dtype)
self.noise_scheduler = QwenImageModel.get_train_scheduler()
self.print_and_status_update("Making pipe")
kwargs = {}
if self._qwen_image_keep_visual:
try:
self.processor = Qwen2VLProcessor.from_pretrained(
model_path, subfolder="processor"
)
except OSError:
self.processor = Qwen2VLProcessor.from_pretrained(
base_model_path, subfolder="processor"
)
kwargs['processor'] = self.processor
pipe: QwenImagePipeline = self._qwen_pipeline(
scheduler=self.noise_scheduler,
text_encoder=None,
tokenizer=tokenizer,
vae=vae,
transformer=None,
**kwargs
)
# for quantization, it works best to do these after making the pipe
pipe.text_encoder = text_encoder
pipe.transformer = transformer
self.print_and_status_update("Preparing Model")
text_encoder = [pipe.text_encoder]
tokenizer = [pipe.tokenizer]
# leave it on cpu for now
if not self.low_vram:
pipe.transformer = pipe.transformer.to(self.device_torch)
flush()
# just to make sure everything is on the right device and dtype
text_encoder[0].to(self.device_torch)
text_encoder[0].requires_grad_(False)
text_encoder[0].eval()
flush()
# save it to the model class
self.vae = vae
self.text_encoder = text_encoder # list of text encoders
self.tokenizer = tokenizer # list of tokenizers
self.model = pipe.transformer
self.pipeline = pipe
self.print_and_status_update("Model Loaded")
def get_generation_pipeline(self):
scheduler = QwenImageModel.get_train_scheduler()
pipeline: QwenImagePipeline = QwenImagePipeline(
scheduler=scheduler,
text_encoder=unwrap_model(self.text_encoder[0]),
tokenizer=self.tokenizer[0],
vae=unwrap_model(self.vae),
transformer=unwrap_model(self.transformer)
)
pipeline = pipeline.to(self.device_torch)
return pipeline
def generate_single_image(
self,
pipeline: QwenImagePipeline,
gen_config: GenerateImageConfig,
conditional_embeds: PromptEmbeds,
unconditional_embeds: PromptEmbeds,
generator: torch.Generator,
extra: dict,
):
self.model.to(self.device_torch, dtype=self.torch_dtype)
control_img = None
if gen_config.ctrl_img is not None:
raise NotImplementedError(
"Control image generation is not supported in Qwen Image model... yet"
)
control_img = Image.open(gen_config.ctrl_img)
control_img = control_img.convert("RGB")
# resize to width and height
if control_img.size != (gen_config.width, gen_config.height):
control_img = control_img.resize(
(gen_config.width, gen_config.height), Image.BILINEAR
)
self.model.to(self.device_torch)
# flush for low vram if we are doing that
flush_between_steps = self.model_config.low_vram
# Fix a bug in diffusers/torch
def callback_on_step_end(pipe, i, t, callback_kwargs):
if flush_between_steps:
flush()
latents = callback_kwargs["latents"]
return {"latents": latents}
sc = self.get_bucket_divisibility()
gen_config.width = int(gen_config.width // sc * sc)
gen_config.height = int(gen_config.height // sc * sc)
img = pipeline(
prompt_embeds=conditional_embeds.text_embeds,
prompt_embeds_mask=conditional_embeds.attention_mask.to(self.device_torch, dtype=torch.int64),
negative_prompt_embeds=unconditional_embeds.text_embeds,
negative_prompt_embeds_mask=unconditional_embeds.attention_mask.to(self.device_torch, dtype=torch.int64),
height=gen_config.height,
width=gen_config.width,
num_inference_steps=gen_config.num_inference_steps,
true_cfg_scale=gen_config.guidance_scale,
latents=gen_config.latents,
generator=generator,
callback_on_step_end=callback_on_step_end,
**extra
).images[0]
return img
def get_noise_prediction(
self,
latent_model_input: torch.Tensor,
timestep: torch.Tensor, # 0 to 1000 scale
text_embeddings: PromptEmbeds,
**kwargs
):
self.model.to(self.device_torch)
batch_size, num_channels_latents, height, width = latent_model_input.shape
ps = self.transformer.config.patch_size
# pack image tokens
latent_model_input = latent_model_input.view(batch_size, num_channels_latents, height // ps, ps, width // ps, ps)
latent_model_input = latent_model_input.permute(0, 2, 4, 1, 3, 5)
latent_model_input = latent_model_input.reshape(batch_size, (height // ps) * (width // ps), num_channels_latents * (ps * ps))
# img_shapes passed to the model
img_h2, img_w2 = height // ps, width // ps
img_shapes = [[(1, img_h2, img_w2)]] * batch_size
enc_hs = text_embeddings.text_embeds.to(self.device_torch, self.torch_dtype)
prompt_embeds_mask = text_embeddings.attention_mask.to(self.device_torch, dtype=torch.int64)
txt_seq_lens = prompt_embeds_mask.sum(dim=1).tolist()
noise_pred = self.transformer(
hidden_states=latent_model_input.to(self.device_torch, self.torch_dtype),
timestep=timestep / 1000,
guidance=None,
encoder_hidden_states=enc_hs,
encoder_hidden_states_mask=prompt_embeds_mask,
img_shapes=img_shapes,
txt_seq_lens=txt_seq_lens,
return_dict=False,
**kwargs,
)[0]
# unpack
noise_pred = noise_pred.view(batch_size, height // ps, width // ps, num_channels_latents, ps, ps)
noise_pred = noise_pred.permute(0, 3, 1, 4, 2, 5)
noise_pred = noise_pred.reshape(batch_size, num_channels_latents, height, width)
return noise_pred
def get_prompt_embeds(self, prompt: str) -> PromptEmbeds:
if self.pipeline.text_encoder.device != self.device_torch:
self.pipeline.text_encoder.to(self.device_torch)
prompt_embeds, prompt_embeds_mask = self.pipeline.encode_prompt(
prompt,
device=self.device_torch,
num_images_per_prompt=1,
)
pe = PromptEmbeds(
prompt_embeds
)
pe.attention_mask = prompt_embeds_mask
return pe
def get_model_has_grad(self):
return False
def get_te_has_grad(self):
return False
def save_model(self, output_path, meta, save_dtype):
# only save the unet
transformer: QwenImageTransformer2DModel = unwrap_model(self.model)
transformer.save_pretrained(
save_directory=os.path.join(output_path, 'transformer'),
safe_serialization=True,
)
meta_path = os.path.join(output_path, 'aitk_meta.yaml')
with open(meta_path, 'w') as f:
yaml.dump(meta, f)
def get_loss_target(self, *args, **kwargs):
noise = kwargs.get('noise')
batch = kwargs.get('batch')
return (noise - batch.latents).detach()
def get_base_model_version(self):
return "qwen_image"
def get_transformer_block_names(self) -> Optional[List[str]]:
return ['transformer_blocks']
def convert_lora_weights_before_save(self, state_dict):
new_sd = {}
for key, value in state_dict.items():
new_key = key.replace("transformer.", "diffusion_model.")
new_sd[new_key] = value
return new_sd
def convert_lora_weights_before_load(self, state_dict):
new_sd = {}
for key, value in state_dict.items():
new_key = key.replace("diffusion_model.", "transformer.")
new_sd[new_key] = value
return new_sd
def encode_images(
self,
image_list: List[torch.Tensor],
device=None,
dtype=None
):
if device is None:
device = self.vae_device_torch
if dtype is None:
dtype = self.vae_torch_dtype
# Move to vae to device if on cpu
if self.vae.device == 'cpu':
self.vae.to(device)
self.vae.eval()
self.vae.requires_grad_(False)
# move to device and dtype
image_list = [image.to(device, dtype=dtype) for image in image_list]
images = torch.stack(image_list).to(device, dtype=dtype)
# it uses wan vae, so add dim for frame count
images = images.unsqueeze(2)
latents = self.vae.encode(images).latent_dist.sample()
latents_mean = (
torch.tensor(self.vae.config.latents_mean)
.view(1, self.vae.config.z_dim, 1, 1, 1)
.to(latents.device, latents.dtype)
)
latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
latents.device, latents.dtype
)
latents = (latents - latents_mean) * latents_std
latents = latents.to(device, dtype=dtype)
latents = latents.squeeze(2) # remove the frame count dimension
return latents |