File size: 12,992 Bytes
8822914
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import inspect
import weakref
import torch
from typing import TYPE_CHECKING, Tuple
from toolkit.lora_special import LoRASpecialNetwork
from diffusers import FluxTransformer2DModel
from diffusers.models.embeddings import (
    CombinedTimestepTextProjEmbeddings,
    CombinedTimestepGuidanceTextProjEmbeddings,
)
from functools import partial


if TYPE_CHECKING:
    from toolkit.stable_diffusion_model import StableDiffusion
    from toolkit.config_modules import AdapterConfig, TrainConfig, ModelConfig
    from toolkit.custom_adapter import CustomAdapter
    from extensions_built_in.diffusion_models.omnigen2.src.models.transformers import OmniGen2Transformer2DModel


def mean_flow_time_text_embed_forward(
    self: CombinedTimestepTextProjEmbeddings, timestep, pooled_projection
):
    mean_flow_adapter: "MeanFlowAdapter" = self.mean_flow_adapter_ref()
    # make zero timestep ending if none is passed
    if mean_flow_adapter.is_active and timestep.shape[0] == pooled_projection.shape[0]:
        timestep = torch.cat(
            [timestep, torch.zeros_like(timestep)], dim=0
        )  # timestep - 0 (final timestep) == same as start timestep

    timesteps_proj = self.time_proj(timestep)
    timesteps_emb = self.timestep_embedder(
        timesteps_proj.to(dtype=pooled_projection.dtype)
    )  # (N, D)

    # mean flow stuff
    if mean_flow_adapter.is_active:
        # todo make sure that timesteps is batched correctly, I think diffusers expects non batched timesteps
        orig_dtype = timesteps_emb.dtype
        timesteps_emb = timesteps_emb.to(torch.float32)
        timesteps_emb_start, timesteps_emb_end = timesteps_emb.chunk(2, dim=0)
        timesteps_emb = mean_flow_adapter.mean_flow_timestep_embedder(
            torch.cat([timesteps_emb_start, timesteps_emb_end], dim=-1)
        )
        timesteps_emb = timesteps_emb.to(orig_dtype)

    pooled_projections = self.text_embedder(pooled_projection)

    conditioning = timesteps_emb + pooled_projections

    return conditioning


def mean_flow_time_text_guidance_embed_forward(
    self: CombinedTimestepGuidanceTextProjEmbeddings,
    timestep,
    guidance,
    pooled_projection,
):
    mean_flow_adapter: "MeanFlowAdapter" = self.mean_flow_adapter_ref()
    # make zero timestep ending if none is passed
    if mean_flow_adapter.is_active and timestep.shape[0] == pooled_projection.shape[0]:
        timestep = torch.cat(
            [timestep, torch.ones_like(timestep)], dim=0
        )  # timestep - 0 (final timestep) == same as start timestep
    timesteps_proj = self.time_proj(timestep)
    timesteps_emb = self.timestep_embedder(
        timesteps_proj.to(dtype=pooled_projection.dtype)
    )  # (N, D)

    guidance_proj = self.time_proj(guidance)
    guidance_emb = self.guidance_embedder(
        guidance_proj.to(dtype=pooled_projection.dtype)
    )  # (N, D)

    # mean flow stuff
    if mean_flow_adapter.is_active:
        # todo make sure that timesteps is batched correctly, I think diffusers expects non batched timesteps
        orig_dtype = timesteps_emb.dtype
        timesteps_emb = timesteps_emb.to(torch.float32)
        timesteps_emb_start, timesteps_emb_end = timesteps_emb.chunk(2, dim=0)
        timesteps_emb = mean_flow_adapter.mean_flow_timestep_embedder(
            torch.cat([timesteps_emb_start, timesteps_emb_end], dim=-1)
        )
        timesteps_emb = timesteps_emb.to(orig_dtype)

    time_guidance_emb = timesteps_emb + guidance_emb

    pooled_projections = self.text_embedder(pooled_projection)
    conditioning = time_guidance_emb + pooled_projections

    return conditioning


def convert_flux_to_mean_flow(
    transformer: FluxTransformer2DModel,
):
    if isinstance(transformer.time_text_embed, CombinedTimestepTextProjEmbeddings):
        transformer.time_text_embed.forward = partial(
            mean_flow_time_text_embed_forward, transformer.time_text_embed
        )
    elif isinstance(
        transformer.time_text_embed, CombinedTimestepGuidanceTextProjEmbeddings
    ):
        transformer.time_text_embed.forward = partial(
            mean_flow_time_text_guidance_embed_forward, transformer.time_text_embed
        )
    else:
        raise ValueError(
            "Unsupported time_text_embed type: {}".format(
                type(transformer.time_text_embed)
            )
        )

def mean_flow_omnigen2_time_text_embed_forward(
    self, timestep: torch.Tensor, text_hidden_states: torch.Tensor, dtype: torch.dtype
) -> Tuple[torch.Tensor, torch.Tensor]:
    mean_flow_adapter: "MeanFlowAdapter" = self.mean_flow_adapter_ref()
    if mean_flow_adapter.is_active and timestep.shape[0] == text_hidden_states.shape[0]:
        timestep = torch.cat(
            [timestep, torch.ones_like(timestep)], dim=0  # omnigen does reverse timesteps
        )
    timestep_proj = self.time_proj(timestep).to(dtype=dtype)
    time_embed = self.timestep_embedder(timestep_proj)
    
    # mean flow stuff
    if mean_flow_adapter.is_active:
        # todo make sure that timesteps is batched correctly, I think diffusers expects non batched timesteps
        orig_dtype = time_embed.dtype
        time_embed = time_embed.to(torch.float32)
        time_embed_start, time_embed_end = time_embed.chunk(2, dim=0)
        time_embed = mean_flow_adapter.mean_flow_timestep_embedder(
            torch.cat([time_embed_start, time_embed_end], dim=-1)
        )
        time_embed = time_embed.to(orig_dtype)
    
    caption_embed = self.caption_embedder(text_hidden_states)
    return time_embed, caption_embed


def convert_omnigen2_to_mean_flow(
    transformer: 'OmniGen2Transformer2DModel',
):
    transformer.time_caption_embed.forward = partial(
        mean_flow_omnigen2_time_text_embed_forward, transformer.time_caption_embed
    )

class MeanFlowAdapter(torch.nn.Module):
    def __init__(
        self,
        adapter: "CustomAdapter",
        sd: "StableDiffusion",
        config: "AdapterConfig",
        train_config: "TrainConfig",
    ):
        super().__init__()
        self.adapter_ref: weakref.ref = weakref.ref(adapter)
        self.sd_ref = weakref.ref(sd)
        self.model_config: ModelConfig = sd.model_config
        self.network_config = config.lora_config
        self.train_config = train_config
        self.device_torch = sd.device_torch
        self.lora = None

        if self.network_config is not None:
            network_kwargs = (
                {}
                if self.network_config.network_kwargs is None
                else self.network_config.network_kwargs
            )
            if hasattr(sd, "target_lora_modules"):
                network_kwargs["target_lin_modules"] = sd.target_lora_modules

            if "ignore_if_contains" not in network_kwargs:
                network_kwargs["ignore_if_contains"] = []

            self.lora = LoRASpecialNetwork(
                text_encoder=sd.text_encoder,
                unet=sd.unet,
                lora_dim=self.network_config.linear,
                multiplier=1.0,
                alpha=self.network_config.linear_alpha,
                train_unet=self.train_config.train_unet,
                train_text_encoder=self.train_config.train_text_encoder,
                conv_lora_dim=self.network_config.conv,
                conv_alpha=self.network_config.conv_alpha,
                is_sdxl=self.model_config.is_xl or self.model_config.is_ssd,
                is_v2=self.model_config.is_v2,
                is_v3=self.model_config.is_v3,
                is_pixart=self.model_config.is_pixart,
                is_auraflow=self.model_config.is_auraflow,
                is_flux=self.model_config.is_flux,
                is_lumina2=self.model_config.is_lumina2,
                is_ssd=self.model_config.is_ssd,
                is_vega=self.model_config.is_vega,
                dropout=self.network_config.dropout,
                use_text_encoder_1=self.model_config.use_text_encoder_1,
                use_text_encoder_2=self.model_config.use_text_encoder_2,
                use_bias=False,
                is_lorm=False,
                network_config=self.network_config,
                network_type=self.network_config.type,
                transformer_only=self.network_config.transformer_only,
                is_transformer=sd.is_transformer,
                base_model=sd,
                **network_kwargs,
            )
            self.lora.force_to(self.device_torch, dtype=torch.float32)
            self.lora._update_torch_multiplier()
            self.lora.apply_to(
                sd.text_encoder,
                sd.unet,
                self.train_config.train_text_encoder,
                self.train_config.train_unet,
            )
            self.lora.can_merge_in = False
            self.lora.prepare_grad_etc(sd.text_encoder, sd.unet)
            if self.train_config.gradient_checkpointing:
                self.lora.enable_gradient_checkpointing()

        emb_dim = None
        if self.model_config.arch in ["flux", "flex2", "flex2"]:
            transformer: FluxTransformer2DModel = sd.unet
            emb_dim = (
                transformer.config.num_attention_heads
                * transformer.config.attention_head_dim
            )
            convert_flux_to_mean_flow(transformer)
        
        elif self.model_config.arch in ["omnigen2"]:
            transformer: 'OmniGen2Transformer2DModel' = sd.unet
            emb_dim = (
                1024
            )
            convert_omnigen2_to_mean_flow(transformer)
        else:
            raise ValueError(f"Unsupported architecture: {self.model_config.arch}")

        self.mean_flow_timestep_embedder = torch.nn.Linear(
            emb_dim * 2,
            emb_dim,
        )
        
        # make the model function as before adding this adapter by initializing the weights
        with torch.no_grad():
            self.mean_flow_timestep_embedder.weight.zero_()
            self.mean_flow_timestep_embedder.weight[:, :emb_dim] = torch.eye(emb_dim)
            self.mean_flow_timestep_embedder.bias.zero_()

        self.mean_flow_timestep_embedder.to(self.device_torch)

        # add our adapter as a weak ref
        if self.model_config.arch in ["flux", "flex2", "flex2"]:
            sd.unet.time_text_embed.mean_flow_adapter_ref = weakref.ref(self)
        elif self.model_config.arch in ["omnigen2"]:
            sd.unet.time_caption_embed.mean_flow_adapter_ref = weakref.ref(self)

    def get_params(self):
        if self.lora is not None:
            config = {
                "text_encoder_lr": self.train_config.lr,
                "unet_lr": self.train_config.lr,
            }
            sig = inspect.signature(self.lora.prepare_optimizer_params)
            if "default_lr" in sig.parameters:
                config["default_lr"] = self.train_config.lr
            if "learning_rate" in sig.parameters:
                config["learning_rate"] = self.train_config.lr
            params_net = self.lora.prepare_optimizer_params(**config)

            # we want only tensors here
            params = []
            for p in params_net:
                if isinstance(p, dict):
                    params += p["params"]
                elif isinstance(p, torch.Tensor):
                    params.append(p)
                elif isinstance(p, list):
                    params += p
        else:
            params = []

        # make sure the embedder is float32
        self.mean_flow_timestep_embedder.to(torch.float32)
        self.mean_flow_timestep_embedder.requires_grad = True
        self.mean_flow_timestep_embedder.train()

        params += list(self.mean_flow_timestep_embedder.parameters())

        # we need to be able to yield from the list like yield from params

        return params

    def load_weights(self, state_dict, strict=True):
        lora_sd = {}
        mean_flow_embedder_sd = {}
        for key, value in state_dict.items():
            if "mean_flow_timestep_embedder" in key:
                new_key = key.replace("transformer.mean_flow_timestep_embedder.", "")
                mean_flow_embedder_sd[new_key] = value
            else:
                lora_sd[key] = value

        # todo process state dict before loading for models that need it
        if self.lora is not None:
            self.lora.load_weights(lora_sd)
        self.mean_flow_timestep_embedder.load_state_dict(
            mean_flow_embedder_sd, strict=False
        )

    def get_state_dict(self):
        if self.lora is not None:
            lora_sd = self.lora.get_state_dict(dtype=torch.float32)
        else:
            lora_sd = {}
        # todo make sure we match loras elseware.
        mean_flow_embedder_sd = self.mean_flow_timestep_embedder.state_dict()
        for key, value in mean_flow_embedder_sd.items():
            lora_sd[f"transformer.mean_flow_timestep_embedder.{key}"] = value
        return lora_sd

    @property
    def is_active(self):
        return self.adapter_ref().is_active