Spaces:
Runtime error
Runtime error
| import torch | |
| from toolkit.basic import flush | |
| from transformers import AutoTokenizer, UMT5EncoderModel | |
| from diffusers import WanPipeline, WanTransformer3DModel, AutoencoderKLWan | |
| import torch | |
| from diffusers import FlowMatchEulerDiscreteScheduler | |
| from typing import List | |
| from diffusers.pipelines.wan.pipeline_output import WanPipelineOutput | |
| from diffusers.pipelines.wan.pipeline_wan import XLA_AVAILABLE | |
| from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback | |
| from typing import Any, Callable, Dict, List, Optional, Union | |
| from diffusers.image_processor import PipelineImageInput | |
| class Wan22Pipeline(WanPipeline): | |
| def __init__( | |
| self, | |
| tokenizer: AutoTokenizer, | |
| text_encoder: UMT5EncoderModel, | |
| transformer: WanTransformer3DModel, | |
| vae: AutoencoderKLWan, | |
| scheduler: FlowMatchEulerDiscreteScheduler, | |
| transformer_2: Optional[WanTransformer3DModel] = None, | |
| boundary_ratio: Optional[float] = None, | |
| expand_timesteps: bool = False, # Wan2.2 ti2v | |
| device: torch.device = torch.device("cuda"), | |
| aggressive_offload: bool = False, | |
| ): | |
| super().__init__( | |
| tokenizer=tokenizer, | |
| text_encoder=text_encoder, | |
| transformer=transformer, | |
| transformer_2=transformer_2, | |
| boundary_ratio=boundary_ratio, | |
| expand_timesteps=expand_timesteps, | |
| vae=vae, | |
| scheduler=scheduler, | |
| ) | |
| self._aggressive_offload = aggressive_offload | |
| self._exec_device = device | |
| def _execution_device(self): | |
| return self._exec_device | |
| def __call__( | |
| self: WanPipeline, | |
| prompt: Union[str, List[str]] = None, | |
| negative_prompt: Union[str, List[str]] = None, | |
| height: int = 480, | |
| width: int = 832, | |
| num_frames: int = 81, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 5.0, | |
| guidance_scale_2: Optional[float] = None, | |
| num_videos_per_prompt: Optional[int] = 1, | |
| generator: Optional[Union[torch.Generator, | |
| List[torch.Generator]]] = None, | |
| latents: Optional[torch.Tensor] = None, | |
| prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_prompt_embeds: Optional[torch.Tensor] = None, | |
| output_type: Optional[str] = "np", | |
| return_dict: bool = True, | |
| attention_kwargs: Optional[Dict[str, Any]] = None, | |
| callback_on_step_end: Optional[ | |
| Union[Callable[[int, int, Dict], None], | |
| PipelineCallback, MultiPipelineCallbacks] | |
| ] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| max_sequence_length: int = 512, | |
| noise_mask: Optional[torch.Tensor] = None, | |
| ): | |
| if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): | |
| callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs | |
| if num_frames % self.vae_scale_factor_temporal != 1: | |
| num_frames = num_frames // self.vae_scale_factor_temporal * self.vae_scale_factor_temporal + 1 | |
| num_frames = max(num_frames, 1) | |
| width = width // (self.vae.config.scale_factor_spatial * 2) * (self.vae.config.scale_factor_spatial * 2) | |
| height = height // (self.vae.config.scale_factor_spatial * 2) * (self.vae.config.scale_factor_spatial * 2) | |
| # unload vae and transformer | |
| vae_device = self.vae.device | |
| transformer_device = self.transformer.device | |
| text_encoder_device = self.text_encoder.device | |
| device = self._exec_device | |
| if self._aggressive_offload: | |
| print("Unloading vae") | |
| self.vae.to("cpu") | |
| print("Unloading transformer") | |
| self.transformer.to("cpu") | |
| if self.transformer_2 is not None: | |
| self.transformer_2.to("cpu") | |
| self.text_encoder.to(device) | |
| flush() | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| negative_prompt, | |
| height, | |
| width, | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| callback_on_step_end_tensor_inputs, | |
| guidance_scale_2 | |
| ) | |
| if self.config.boundary_ratio is not None and guidance_scale_2 is None: | |
| guidance_scale_2 = guidance_scale | |
| self._guidance_scale = guidance_scale | |
| self._guidance_scale_2 = guidance_scale_2 | |
| self._attention_kwargs = attention_kwargs | |
| self._current_timestep = None | |
| self._interrupt = False | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| # 3. Encode input prompt | |
| prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| do_classifier_free_guidance=self.do_classifier_free_guidance, | |
| num_videos_per_prompt=num_videos_per_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| max_sequence_length=max_sequence_length, | |
| device=device, | |
| ) | |
| if self._aggressive_offload: | |
| # unload text encoder | |
| print("Unloading text encoder") | |
| self.text_encoder.to("cpu") | |
| self.transformer.to(device) | |
| flush() | |
| transformer_dtype = self.transformer.dtype | |
| prompt_embeds = prompt_embeds.to(device, transformer_dtype) | |
| if negative_prompt_embeds is not None: | |
| negative_prompt_embeds = negative_prompt_embeds.to( | |
| device, transformer_dtype) | |
| # 4. Prepare timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = self.scheduler.timesteps | |
| # 5. Prepare latent variables | |
| num_channels_latents = self.transformer.config.in_channels | |
| conditioning = None # wan2.2 i2v conditioning | |
| # check shape of latents to see if it is first frame conditioned for 2.2 14b i2v | |
| if latents is not None: | |
| if latents.shape[1] == 36: | |
| # first 16 channels are latent. other 20 are conditioning | |
| conditioning = latents[:, 16:] | |
| latents = latents[:, :16] | |
| # we need to trick the in_channls to think it is only 16 channels | |
| num_channels_latents = 16 | |
| latents = self.prepare_latents( | |
| batch_size * num_videos_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| num_frames, | |
| torch.float32, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| mask = noise_mask | |
| if mask is None: | |
| mask = torch.ones(latents.shape, dtype=torch.float32, device=device) | |
| # 6. Denoising loop | |
| num_warmup_steps = len(timesteps) - \ | |
| num_inference_steps * self.scheduler.order | |
| self._num_timesteps = len(timesteps) | |
| if self.config.boundary_ratio is not None: | |
| boundary_timestep = self.config.boundary_ratio * self.scheduler.config.num_train_timesteps | |
| else: | |
| boundary_timestep = None | |
| current_model = self.transformer | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| if self.interrupt: | |
| continue | |
| self._current_timestep = t | |
| if boundary_timestep is None or t >= boundary_timestep: | |
| if self._aggressive_offload and current_model != self.transformer: | |
| if self.transformer_2 is not None: | |
| self.transformer_2.to("cpu") | |
| self.transformer.to(device) | |
| # wan2.1 or high-noise stage in wan2.2 | |
| current_model = self.transformer | |
| current_guidance_scale = guidance_scale | |
| else: | |
| if self._aggressive_offload and current_model != self.transformer_2: | |
| if self.transformer is not None: | |
| self.transformer.to("cpu") | |
| if self.transformer_2 is not None: | |
| self.transformer_2.to(device) | |
| # low-noise stage in wan2.2 | |
| current_model = self.transformer_2 | |
| current_guidance_scale = guidance_scale_2 | |
| latent_model_input = latents.to(device, transformer_dtype) | |
| if self.config.expand_timesteps: | |
| # seq_len: num_latent_frames * latent_height//2 * latent_width//2 | |
| temp_ts = (mask[0][0][:, ::2, ::2] * t).flatten() | |
| # batch_size, seq_len | |
| timestep = temp_ts.unsqueeze(0).expand(latents.shape[0], -1) | |
| else: | |
| timestep = t.expand(latents.shape[0]) | |
| pre_condition_latent_model_input = latent_model_input.clone() | |
| if conditioning is not None: | |
| # conditioning is first frame conditioning for 2.2 i2v | |
| latent_model_input = torch.cat( | |
| [latent_model_input, conditioning], dim=1) | |
| noise_pred = current_model( | |
| hidden_states=latent_model_input, | |
| timestep=timestep, | |
| encoder_hidden_states=prompt_embeds, | |
| attention_kwargs=attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| if self.do_classifier_free_guidance: | |
| noise_uncond = current_model( | |
| hidden_states=latent_model_input, | |
| timestep=timestep, | |
| encoder_hidden_states=negative_prompt_embeds, | |
| attention_kwargs=attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| noise_pred = noise_uncond + current_guidance_scale * \ | |
| (noise_pred - noise_uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step( | |
| noise_pred, t, latents, return_dict=False)[0] | |
| # apply i2v mask | |
| latents = (pre_condition_latent_model_input * (1 - mask)) + ( | |
| latents * mask | |
| ) | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end( | |
| self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop( | |
| "prompt_embeds", prompt_embeds) | |
| negative_prompt_embeds = callback_outputs.pop( | |
| "negative_prompt_embeds", negative_prompt_embeds) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if XLA_AVAILABLE: | |
| xm.mark_step() | |
| self._current_timestep = None | |
| if self._aggressive_offload: | |
| # unload transformer | |
| print("Unloading transformer") | |
| self.transformer.to("cpu") | |
| if self.transformer_2 is not None: | |
| self.transformer_2.to("cpu") | |
| # load vae | |
| print("Loading Vae") | |
| self.vae.to(vae_device) | |
| flush() | |
| if not output_type == "latent": | |
| latents = latents.to(self.vae.dtype) | |
| latents_mean = ( | |
| torch.tensor(self.vae.config.latents_mean) | |
| .view(1, self.vae.config.z_dim, 1, 1, 1) | |
| .to(latents.device, latents.dtype) | |
| ) | |
| latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to( | |
| latents.device, latents.dtype | |
| ) | |
| latents = latents / latents_std + latents_mean | |
| video = self.vae.decode(latents, return_dict=False)[0] | |
| video = self.video_processor.postprocess_video( | |
| video, output_type=output_type) | |
| else: | |
| video = latents | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| # move transformer back to device | |
| if self._aggressive_offload: | |
| # print("Moving transformer back to device") | |
| # self.transformer.to(self._execution_device) | |
| flush() | |
| if not return_dict: | |
| return (video,) | |
| return WanPipelineOutput(frames=video) | |