Spaces:
Runtime error
Runtime error
ai-toolkit
/
extensions_built_in
/image_reference_slider_trainer
/ImageReferenceSliderTrainerProcess.py
| import copy | |
| import random | |
| from collections import OrderedDict | |
| import os | |
| from contextlib import nullcontext | |
| from typing import Optional, Union, List | |
| from torch.utils.data import ConcatDataset, DataLoader | |
| from toolkit.config_modules import ReferenceDatasetConfig | |
| from toolkit.data_loader import PairedImageDataset | |
| from toolkit.prompt_utils import concat_prompt_embeds, split_prompt_embeds | |
| from toolkit.stable_diffusion_model import StableDiffusion, PromptEmbeds | |
| from toolkit.train_tools import get_torch_dtype, apply_snr_weight | |
| import gc | |
| from toolkit import train_tools | |
| import torch | |
| from jobs.process import BaseSDTrainProcess | |
| import random | |
| from toolkit.basic import value_map | |
| def flush(): | |
| torch.cuda.empty_cache() | |
| gc.collect() | |
| class ReferenceSliderConfig: | |
| def __init__(self, **kwargs): | |
| self.additional_losses: List[str] = kwargs.get('additional_losses', []) | |
| self.weight_jitter: float = kwargs.get('weight_jitter', 0.0) | |
| self.datasets: List[ReferenceDatasetConfig] = [ReferenceDatasetConfig(**d) for d in kwargs.get('datasets', [])] | |
| class ImageReferenceSliderTrainerProcess(BaseSDTrainProcess): | |
| sd: StableDiffusion | |
| data_loader: DataLoader = None | |
| def __init__(self, process_id: int, job, config: OrderedDict, **kwargs): | |
| super().__init__(process_id, job, config, **kwargs) | |
| self.prompt_txt_list = None | |
| self.step_num = 0 | |
| self.start_step = 0 | |
| self.device = self.get_conf('device', self.job.device) | |
| self.device_torch = torch.device(self.device) | |
| self.slider_config = ReferenceSliderConfig(**self.get_conf('slider', {})) | |
| def load_datasets(self): | |
| if self.data_loader is None: | |
| print(f"Loading datasets") | |
| datasets = [] | |
| for dataset in self.slider_config.datasets: | |
| print(f" - Dataset: {dataset.pair_folder}") | |
| config = { | |
| 'path': dataset.pair_folder, | |
| 'size': dataset.size, | |
| 'default_prompt': dataset.target_class, | |
| 'network_weight': dataset.network_weight, | |
| 'pos_weight': dataset.pos_weight, | |
| 'neg_weight': dataset.neg_weight, | |
| 'pos_folder': dataset.pos_folder, | |
| 'neg_folder': dataset.neg_folder, | |
| } | |
| image_dataset = PairedImageDataset(config) | |
| datasets.append(image_dataset) | |
| concatenated_dataset = ConcatDataset(datasets) | |
| self.data_loader = DataLoader( | |
| concatenated_dataset, | |
| batch_size=self.train_config.batch_size, | |
| shuffle=True, | |
| num_workers=2 | |
| ) | |
| def before_model_load(self): | |
| pass | |
| def hook_before_train_loop(self): | |
| self.sd.vae.eval() | |
| self.sd.vae.to(self.device_torch) | |
| self.load_datasets() | |
| pass | |
| def hook_train_loop(self, batch): | |
| with torch.no_grad(): | |
| imgs, prompts, network_weights = batch | |
| network_pos_weight, network_neg_weight = network_weights | |
| if isinstance(network_pos_weight, torch.Tensor): | |
| network_pos_weight = network_pos_weight.item() | |
| if isinstance(network_neg_weight, torch.Tensor): | |
| network_neg_weight = network_neg_weight.item() | |
| # get an array of random floats between -weight_jitter and weight_jitter | |
| loss_jitter_multiplier = 1.0 | |
| weight_jitter = self.slider_config.weight_jitter | |
| if weight_jitter > 0.0: | |
| jitter_list = random.uniform(-weight_jitter, weight_jitter) | |
| orig_network_pos_weight = network_pos_weight | |
| network_pos_weight += jitter_list | |
| network_neg_weight += (jitter_list * -1.0) | |
| # penalize the loss for its distance from network_pos_weight | |
| # a jitter_list of abs(3.0) on a weight of 5.0 is a 60% jitter | |
| # so the loss_jitter_multiplier needs to be 0.4 | |
| loss_jitter_multiplier = value_map(abs(jitter_list), 0.0, weight_jitter, 1.0, 0.0) | |
| # if items in network_weight list are tensors, convert them to floats | |
| dtype = get_torch_dtype(self.train_config.dtype) | |
| imgs: torch.Tensor = imgs.to(self.device_torch, dtype=dtype) | |
| # split batched images in half so left is negative and right is positive | |
| negative_images, positive_images = torch.chunk(imgs, 2, dim=3) | |
| positive_latents = self.sd.encode_images(positive_images) | |
| negative_latents = self.sd.encode_images(negative_images) | |
| height = positive_images.shape[2] | |
| width = positive_images.shape[3] | |
| batch_size = positive_images.shape[0] | |
| if self.train_config.gradient_checkpointing: | |
| # may get disabled elsewhere | |
| self.sd.unet.enable_gradient_checkpointing() | |
| noise_scheduler = self.sd.noise_scheduler | |
| optimizer = self.optimizer | |
| lr_scheduler = self.lr_scheduler | |
| self.sd.noise_scheduler.set_timesteps( | |
| self.train_config.max_denoising_steps, device=self.device_torch | |
| ) | |
| timesteps = torch.randint(0, self.train_config.max_denoising_steps, (1,), device=self.device_torch) | |
| timesteps = timesteps.long() | |
| # get noise | |
| noise_positive = self.sd.get_latent_noise( | |
| pixel_height=height, | |
| pixel_width=width, | |
| batch_size=batch_size, | |
| noise_offset=self.train_config.noise_offset, | |
| ).to(self.device_torch, dtype=dtype) | |
| noise_negative = noise_positive.clone() | |
| # Add noise to the latents according to the noise magnitude at each timestep | |
| # (this is the forward diffusion process) | |
| noisy_positive_latents = noise_scheduler.add_noise(positive_latents, noise_positive, timesteps) | |
| noisy_negative_latents = noise_scheduler.add_noise(negative_latents, noise_negative, timesteps) | |
| noisy_latents = torch.cat([noisy_positive_latents, noisy_negative_latents], dim=0) | |
| noise = torch.cat([noise_positive, noise_negative], dim=0) | |
| timesteps = torch.cat([timesteps, timesteps], dim=0) | |
| network_multiplier = [network_pos_weight * 1.0, network_neg_weight * -1.0] | |
| self.optimizer.zero_grad() | |
| noisy_latents.requires_grad = False | |
| # if training text encoder enable grads, else do context of no grad | |
| with torch.set_grad_enabled(self.train_config.train_text_encoder): | |
| # fix issue with them being tuples sometimes | |
| prompt_list = [] | |
| for prompt in prompts: | |
| if isinstance(prompt, tuple): | |
| prompt = prompt[0] | |
| prompt_list.append(prompt) | |
| conditional_embeds = self.sd.encode_prompt(prompt_list).to(self.device_torch, dtype=dtype) | |
| conditional_embeds = concat_prompt_embeds([conditional_embeds, conditional_embeds]) | |
| # if self.model_config.is_xl: | |
| # # todo also allow for setting this for low ram in general, but sdxl spikes a ton on back prop | |
| # network_multiplier_list = network_multiplier | |
| # noisy_latent_list = torch.chunk(noisy_latents, 2, dim=0) | |
| # noise_list = torch.chunk(noise, 2, dim=0) | |
| # timesteps_list = torch.chunk(timesteps, 2, dim=0) | |
| # conditional_embeds_list = split_prompt_embeds(conditional_embeds) | |
| # else: | |
| network_multiplier_list = [network_multiplier] | |
| noisy_latent_list = [noisy_latents] | |
| noise_list = [noise] | |
| timesteps_list = [timesteps] | |
| conditional_embeds_list = [conditional_embeds] | |
| losses = [] | |
| # allow to chunk it out to save vram | |
| for network_multiplier, noisy_latents, noise, timesteps, conditional_embeds in zip( | |
| network_multiplier_list, noisy_latent_list, noise_list, timesteps_list, conditional_embeds_list | |
| ): | |
| with self.network: | |
| assert self.network.is_active | |
| self.network.multiplier = network_multiplier | |
| noise_pred = self.sd.predict_noise( | |
| latents=noisy_latents.to(self.device_torch, dtype=dtype), | |
| conditional_embeddings=conditional_embeds.to(self.device_torch, dtype=dtype), | |
| timestep=timesteps, | |
| ) | |
| noise = noise.to(self.device_torch, dtype=dtype) | |
| if self.sd.prediction_type == 'v_prediction': | |
| # v-parameterization training | |
| target = noise_scheduler.get_velocity(noisy_latents, noise, timesteps) | |
| else: | |
| target = noise | |
| loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="none") | |
| loss = loss.mean([1, 2, 3]) | |
| if self.train_config.min_snr_gamma is not None and self.train_config.min_snr_gamma > 0.000001: | |
| # add min_snr_gamma | |
| loss = apply_snr_weight(loss, timesteps, noise_scheduler, self.train_config.min_snr_gamma) | |
| loss = loss.mean() * loss_jitter_multiplier | |
| loss_float = loss.item() | |
| losses.append(loss_float) | |
| # back propagate loss to free ram | |
| loss.backward() | |
| # apply gradients | |
| optimizer.step() | |
| lr_scheduler.step() | |
| # reset network | |
| self.network.multiplier = 1.0 | |
| loss_dict = OrderedDict( | |
| {'loss': sum(losses) / len(losses) if len(losses) > 0 else 0.0} | |
| ) | |
| return loss_dict | |
| # end hook_train_loop | |