Spaces:
Running
Running
| import pandas as pd | |
| df = pd.read_csv('./medical_data.csv') | |
| context_data = [] | |
| for i in range(len(df)): | |
| context = "" | |
| for j in range(3): | |
| context += df.columns[j] | |
| context += ": " | |
| context += df.iloc[i][j] | |
| context += " " | |
| context_data.append(context) | |
| import os | |
| # Get the secret key from the environment | |
| groq_key = os.environ.get('groq_api_keys') | |
| ## LLM used for RAG | |
| from langchain_groq import ChatGroq | |
| llm = ChatGroq(model="llama-3.1-70b-versatile",api_key=groq_key) | |
| ## Embedding model! | |
| from langchain_huggingface import HuggingFaceEmbeddings | |
| embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1") | |
| # create vector store! | |
| from langchain_chroma import Chroma | |
| vectorstore = Chroma( | |
| collection_name="medical_dataset_store", | |
| embedding_function=embed_model, | |
| persist_directory="./", | |
| ) | |
| # add data to vector nstore | |
| vectorstore.add_texts(context_data) | |
| retriever = vectorstore.as_retriever() | |
| from langchain_core.prompts import PromptTemplate | |
| template = ("""You are a medical expert. | |
| Use the provided context to answer the question. | |
| If you don't know the answer, say so. Explain your answer in detail. | |
| Do not discuss the context in your response; just provide the answer directly. | |
| Context: {context} | |
| Question: {question} | |
| Answer:""") | |
| rag_prompt = PromptTemplate.from_template(template) | |
| from langchain_core.output_parsers import StrOutputParser | |
| from langchain_core.runnables import RunnablePassthrough | |
| rag_chain = ( | |
| {"context": retriever, "question": RunnablePassthrough()} | |
| | rag_prompt | |
| | llm | |
| | StrOutputParser() | |
| ) | |
| import gradio as gr | |
| def rag_memory_stream(text): | |
| partial_text = "" | |
| for new_text in rag_chain.stream(text): | |
| partial_text += new_text | |
| yield partial_text | |
| title = "Real-time AI App with Groq API and LangChain to Answer medical questions" | |
| demo = gr.Interface( | |
| title=title, | |
| fn=rag_memory_stream, | |
| inputs="text", | |
| outputs="text", | |
| allow_flagging="never", | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |