Spaces:
Sleeping
Sleeping
| import copy | |
| from typing import Dict, List, Optional, Sequence, Union | |
| import torch | |
| import torch.nn.functional as F | |
| from torch import Tensor, nn | |
| from mmocr.models.common import Dictionary | |
| from mmocr.models.textrecog.decoders import BaseDecoder | |
| from mmocr.registry import MODELS | |
| from mmocr.utils.typing_utils import TextSpottingDataSample | |
| from .position_embedding import PositionEmbeddingSine | |
| class SPTSDecoder(BaseDecoder): | |
| """SPTS Decoder. | |
| Args: | |
| dictionary (dict or :obj:`Dictionary`): The config for `Dictionary` or | |
| the instance of `Dictionary`. | |
| num_bins (int): Number of bins dividing the image. Defaults to 1000. | |
| n_head (int): Number of parallel attention heads. Defaults to 8. | |
| d_model (int): Dimension :math:`D_m` of the input from previous model. | |
| Defaults to 256. | |
| d_feedforward (int): Dimension of the feedforward layer. | |
| Defaults to 1024. | |
| normalize_before (bool): Whether to normalize the input before | |
| encoding/decoding. Defaults to True. | |
| max_num_text (int): Maximum number of text instances in a sample. | |
| Defaults to 60. | |
| module_loss (dict, optional): Config to build loss. Defaults to None. | |
| postprocessor (dict, optional): Config to build postprocessor. | |
| Defaults to None. | |
| init_cfg (dict or list[dict], optional): Initialization configs. | |
| Defaults to None. | |
| """ | |
| def __init__(self, | |
| dictionary: Union[Dict, Dictionary], | |
| num_bins: int = 1000, | |
| n_head: int = 8, | |
| d_model: int = 256, | |
| d_feedforward: int = 1024, | |
| normalize_before: bool = True, | |
| dropout: float = 0.1, | |
| max_num_text: int = 60, | |
| module_loss: Optional[Dict] = None, | |
| postprocessor: Optional[Dict] = None, | |
| init_cfg: Optional[Union[Dict, List[Dict]]] = None) -> None: | |
| # TODO: fix hardcode | |
| self.max_seq_len = (2 + 25) * max_num_text + 1 | |
| super().__init__( | |
| dictionary=dictionary, | |
| module_loss=module_loss, | |
| postprocessor=postprocessor, | |
| max_seq_len=self.max_seq_len, | |
| init_cfg=init_cfg) | |
| self.num_bins = num_bins | |
| self.embedding = DecoderEmbeddings(self.dictionary.num_classes, | |
| self.dictionary.padding_idx, | |
| d_model, self.max_seq_len, dropout) | |
| self.pos_embedding = PositionEmbeddingSine(d_model // 2) | |
| self.vocab_embed = self._gen_vocab_embed(d_model, d_model, | |
| self.dictionary.num_classes, | |
| 3) | |
| encoder_layer = TransformerEncoderLayer(d_model, n_head, d_feedforward, | |
| dropout, 'relu', | |
| normalize_before) | |
| encoder_norm = nn.LayerNorm(d_model) if normalize_before else None | |
| num_encoder_layers = 6 | |
| self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, | |
| encoder_norm) | |
| decoder_layer = TransformerDecoderLayer(d_model, n_head, d_feedforward, | |
| dropout, 'relu', | |
| normalize_before) | |
| decoder_norm = nn.LayerNorm(d_model) | |
| num_decoder_layers = 6 | |
| self.decoder = TransformerDecoder( | |
| decoder_layer, | |
| num_decoder_layers, | |
| decoder_norm, | |
| return_intermediate=False) | |
| self._reset_parameters() | |
| def _reset_parameters(self): | |
| for p in self.parameters(): | |
| if p.dim() > 1: | |
| nn.init.xavier_uniform_(p) | |
| def _gen_vocab_embed(self, input_dim: int, hidden_dim: int, | |
| output_dim: int, num_layers: int) -> nn.Module: | |
| """Generate vocab embedding layer.""" | |
| net = nn.Sequential() | |
| h = [hidden_dim] * (num_layers - 1) | |
| for i, (n, k) in enumerate(zip([input_dim] + h, h + [output_dim])): | |
| net.add_module(f'layer-{i}', nn.Linear(n, k)) | |
| if i < num_layers - 1: | |
| net.add_module(f'relu-{i}', nn.ReLU()) | |
| return net | |
| def forward_train( | |
| self, | |
| feat: Optional[torch.Tensor] = None, | |
| out_enc: Optional[torch.Tensor] = None, | |
| data_samples: Optional[Sequence[TextSpottingDataSample]] = None | |
| ) -> torch.Tensor: | |
| """Forward for training. | |
| Args: | |
| feat (torch.Tensor, optional): The feature map from backbone of | |
| shape :math:`(N, E, H, W)`. Defaults to None. | |
| out_enc (torch.Tensor, optional): Encoder output. Defaults to None. | |
| data_samples (Sequence[TextRecogDataSample]): Batch of | |
| TextRecogDataSample, containing gt_text information. Defaults | |
| to None. | |
| """ | |
| mask, pos_embed, memory, query_embed = self._embed( | |
| out_enc, data_samples) | |
| padded_targets = [ | |
| data_sample.gt_instances.padded_indexes | |
| for data_sample in data_samples | |
| ] | |
| padded_targets = torch.stack(padded_targets, dim=0).to(out_enc.device) | |
| # we don't need eos here | |
| tgt = self.embedding(padded_targets[:, :-1]).permute(1, 0, 2) | |
| hs = self.decoder( | |
| tgt, | |
| memory, | |
| memory_key_padding_mask=mask, | |
| pos=pos_embed, | |
| query_pos=query_embed[:len(tgt)], | |
| tgt_mask=self._generate_square_subsequent_mask(len(tgt)).to( | |
| tgt.device)) | |
| return self.vocab_embed(hs[-1].transpose(0, 1)) | |
| def forward_test( | |
| self, | |
| feat: Optional[torch.Tensor] = None, | |
| out_enc: Optional[torch.Tensor] = None, | |
| data_samples: Optional[Sequence[TextSpottingDataSample]] = None | |
| ) -> torch.Tensor: | |
| """Forward for testing. | |
| Args: | |
| feat (torch.Tensor, optional): The feature map from backbone of | |
| shape :math:`(N, E, H, W)`. Defaults to None. | |
| out_enc (torch.Tensor, optional): Encoder output. Defaults to None. | |
| data_samples (Sequence[TextRecogDataSample]): Batch of | |
| TextRecogDataSample, containing gt_text information. Defaults | |
| to None. | |
| """ | |
| batch_size = out_enc.shape[0] | |
| mask, pos_embed, memory, query_embed = self._embed( | |
| out_enc, data_samples) | |
| max_probs = [] | |
| seq = torch.zeros( | |
| batch_size, 1, dtype=torch.long).to( | |
| out_enc.device) + self.dictionary.start_idx | |
| for i in range(self.max_seq_len): | |
| tgt = self.embedding(seq).permute(1, 0, 2) | |
| hs = self.decoder( | |
| tgt, | |
| memory, | |
| memory_key_padding_mask=mask, | |
| pos=pos_embed, | |
| query_pos=query_embed[:len(tgt)], | |
| tgt_mask=self._generate_square_subsequent_mask(len(tgt)).to( | |
| tgt.device)) # bs, 1, E ? | |
| out = self.vocab_embed(hs.transpose(1, 2)[-1, :, -1, :]) | |
| out = out.softmax(-1) | |
| # bins chars unk eos seq_eos sos padding | |
| if i % 27 == 0: # coordinate or eos | |
| out[:, self.num_bins:self.dictionary.seq_end_idx] = 0 | |
| out[:, self.dictionary.seq_end_idx + 1:] = 0 | |
| elif i % 27 == 1: # coordinate | |
| out[:, self.num_bins:] = 0 | |
| else: # chars | |
| out[:, :self.num_bins] = 0 | |
| out[:, self.dictionary.seq_end_idx:] = 0 | |
| max_prob, extra_seq = torch.max(out, dim=-1, keepdim=True) | |
| # prob, extra_seq = out.topk(dim=-1, k=1) | |
| # work for single batch only (original implementation) | |
| # TODO: optimize for multi-batch | |
| seq = torch.cat([seq, extra_seq], dim=-1) | |
| max_probs.append(max_prob) | |
| if extra_seq[0] == self.dictionary.seq_end_idx: | |
| break | |
| max_probs = torch.cat(max_probs, dim=-1) | |
| max_probs = max_probs[:, :-1] # remove seq_eos | |
| seq = seq[:, 1:-1] # remove start index and seq_eos | |
| return max_probs, seq | |
| def _embed(self, out_enc, data_samples): | |
| bs, c, h, w = out_enc.shape | |
| mask, pos_embed = self._gen_mask(out_enc, data_samples) | |
| out_enc = out_enc.flatten(2).permute(2, 0, 1) | |
| pos_embed = pos_embed.flatten(2).permute(2, 0, 1) | |
| mask = mask.flatten(1) | |
| # TODO move encoder to mmcv | |
| memory = self.encoder( | |
| out_enc, src_key_padding_mask=mask, pos=pos_embed.half()) | |
| query_embed = self.embedding.position_embeddings.weight.unsqueeze(1) | |
| query_embed = query_embed.repeat(1, bs, 1) | |
| return mask, pos_embed, memory, query_embed | |
| def _generate_square_subsequent_mask(self, size): | |
| r"""Generate a square mask for the sequence. The masked positions are | |
| filled with float('-inf'). Unmasked positions are filled with | |
| float(0.0). | |
| """ | |
| mask = (torch.triu(torch.ones(size, size)) == 1).transpose(0, 1) | |
| mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill( | |
| mask == 1, float(0.0)) | |
| return mask | |
| def _gen_mask(self, out_enc, data_samples): | |
| bs, _, h, w = out_enc.shape | |
| masks = torch.ones((bs, h, w), dtype=bool, device=out_enc.device) | |
| for i, data_sample in enumerate(data_samples): | |
| img_h, img_w = data_sample.img_shape | |
| masks[i, :img_h, :img_w] = False | |
| masks = F.interpolate( | |
| masks[None].float(), size=(h, w)).to(torch.bool)[0] | |
| return masks, self.pos_embedding(masks) | |
| class DecoderEmbeddings(nn.Module): | |
| def __init__(self, num_classes: int, padding_idx: int, hidden_dim, | |
| max_position_embeddings, dropout): | |
| super(DecoderEmbeddings, self).__init__() | |
| self.word_embeddings = nn.Embedding( | |
| num_classes, hidden_dim, padding_idx=padding_idx) | |
| self.position_embeddings = nn.Embedding(max_position_embeddings, | |
| hidden_dim) | |
| self.LayerNorm = torch.nn.LayerNorm(hidden_dim) | |
| self.dropout = nn.Dropout(dropout) | |
| def forward(self, x): | |
| input_shape = x.size() | |
| seq_length = input_shape[1] | |
| device = x.device | |
| position_ids = torch.arange( | |
| seq_length, dtype=torch.long, device=device) | |
| position_ids = position_ids.unsqueeze(0).expand(input_shape) | |
| input_embeds = self.word_embeddings(x) | |
| position_embeds = self.position_embeddings(position_ids) | |
| embeddings = input_embeds + position_embeds | |
| embeddings = self.LayerNorm(embeddings) | |
| embeddings = self.dropout(embeddings) | |
| return embeddings | |
| class TransformerEncoder(nn.Module): | |
| def __init__(self, encoder_layer, num_layers, norm=None): | |
| super(TransformerEncoder, self).__init__() | |
| self.layers = _get_clones(encoder_layer, num_layers) | |
| self.num_layers = num_layers | |
| self.norm = norm | |
| def forward(self, | |
| src, | |
| mask: Optional[Tensor] = None, | |
| src_key_padding_mask: Optional[Tensor] = None, | |
| pos: Optional[Tensor] = None): | |
| output = src | |
| for layer in self.layers: | |
| output = layer( | |
| output, | |
| src_mask=mask, | |
| src_key_padding_mask=src_key_padding_mask, | |
| pos=pos) | |
| if self.norm is not None: | |
| output = self.norm(output) | |
| return output | |
| class TransformerDecoder(nn.Module): | |
| def __init__(self, | |
| decoder_layer, | |
| num_layers, | |
| norm=None, | |
| return_intermediate=False): | |
| super(TransformerDecoder, self).__init__() | |
| self.layers = _get_clones(decoder_layer, num_layers) | |
| self.num_layers = num_layers | |
| self.norm = norm | |
| self.return_intermediate = return_intermediate | |
| def forward(self, | |
| tgt, | |
| memory, | |
| tgt_mask: Optional[Tensor] = None, | |
| memory_mask: Optional[Tensor] = None, | |
| tgt_key_padding_mask: Optional[Tensor] = None, | |
| memory_key_padding_mask: Optional[Tensor] = None, | |
| pos: Optional[Tensor] = None, | |
| query_pos: Optional[Tensor] = None): | |
| output = tgt | |
| for layer in self.layers: | |
| output = layer( | |
| output, | |
| memory, | |
| tgt_mask=tgt_mask, | |
| memory_mask=memory_mask, | |
| tgt_key_padding_mask=tgt_key_padding_mask, | |
| memory_key_padding_mask=memory_key_padding_mask, | |
| pos=pos, | |
| query_pos=query_pos) | |
| if self.norm is not None: | |
| # nn.LayerNorm(d_model) | |
| output = self.norm(output) | |
| return output.unsqueeze(0) | |
| class TransformerEncoderLayer(nn.Module): | |
| def __init__(self, | |
| d_model, | |
| nhead, | |
| dim_feedforward=2048, | |
| dropout=0.1, | |
| activation='relu', | |
| normalize_before=False): | |
| super(TransformerEncoderLayer, self).__init__() | |
| self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) | |
| # Implementation of Feedforward model | |
| self.linear1 = nn.Linear(d_model, dim_feedforward) | |
| self.dropout = nn.Dropout(dropout) | |
| self.linear2 = nn.Linear(dim_feedforward, d_model) | |
| self.norm1 = nn.LayerNorm(d_model) | |
| self.norm2 = nn.LayerNorm(d_model) | |
| self.dropout1 = nn.Dropout(dropout) | |
| self.dropout2 = nn.Dropout(dropout) | |
| self.activation = _get_activation_fn(activation) | |
| self.normalize_before = normalize_before | |
| def with_pos_embed(self, tensor, pos: Optional[Tensor]): | |
| return tensor if pos is None else tensor + pos | |
| def forward_post(self, | |
| src, | |
| src_mask: Optional[Tensor] = None, | |
| src_key_padding_mask: Optional[Tensor] = None, | |
| pos: Optional[Tensor] = None): | |
| q = k = self.with_pos_embed(src, pos) | |
| src2 = self.self_attn( | |
| q, | |
| k, | |
| value=src, | |
| attn_mask=src_mask, | |
| key_padding_mask=src_key_padding_mask)[0] | |
| src = src + self.dropout1(src2) | |
| src = self.norm1(src) | |
| src2 = self.linear2(self.dropout(self.activation(self.linear1(src)))) | |
| src = src + self.dropout2(src2) | |
| src = self.norm2(src) | |
| return src | |
| def forward_pre(self, | |
| src, | |
| src_mask: Optional[Tensor] = None, | |
| src_key_padding_mask: Optional[Tensor] = None, | |
| pos: Optional[Tensor] = None): | |
| src2 = self.norm1(src) | |
| q = k = self.with_pos_embed(src2, pos) | |
| src2 = self.self_attn( | |
| q, | |
| k, | |
| value=src2, | |
| attn_mask=src_mask, | |
| key_padding_mask=src_key_padding_mask)[0] | |
| src = src + self.dropout1(src2) | |
| src2 = self.norm2(src) | |
| src2 = self.linear2(self.dropout(self.activation(self.linear1(src2)))) | |
| src = src + self.dropout2(src2) | |
| return src | |
| def forward(self, | |
| src, | |
| src_mask: Optional[Tensor] = None, | |
| src_key_padding_mask: Optional[Tensor] = None, | |
| pos: Optional[Tensor] = None): | |
| if self.normalize_before: | |
| return self.forward_pre(src, src_mask, src_key_padding_mask, pos) | |
| return self.forward_post(src, src_mask, src_key_padding_mask, pos) | |
| class TransformerDecoderLayer(nn.Module): | |
| def __init__(self, | |
| d_model, | |
| nhead, | |
| dim_feedforward=2048, | |
| dropout=0.1, | |
| activation='relu', | |
| normalize_before=False): | |
| super(TransformerDecoderLayer, self).__init__() | |
| self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) | |
| self.multihead_attn = nn.MultiheadAttention( | |
| d_model, nhead, dropout=dropout) | |
| # Implementation of Feedforward model | |
| self.linear1 = nn.Linear(d_model, dim_feedforward) | |
| self.dropout = nn.Dropout(dropout) | |
| self.linear2 = nn.Linear(dim_feedforward, d_model) | |
| self.norm1 = nn.LayerNorm(d_model) | |
| self.norm2 = nn.LayerNorm(d_model) | |
| self.norm3 = nn.LayerNorm(d_model) | |
| self.dropout1 = nn.Dropout(dropout) | |
| self.dropout2 = nn.Dropout(dropout) | |
| self.dropout3 = nn.Dropout(dropout) | |
| self.activation = _get_activation_fn(activation) | |
| self.normalize_before = normalize_before | |
| def with_pos_embed(self, tensor, pos: Optional[Tensor]): | |
| return tensor if pos is None else tensor + pos | |
| def forward_post(self, | |
| tgt, | |
| memory, | |
| tgt_mask: Optional[Tensor] = None, | |
| memory_mask: Optional[Tensor] = None, | |
| tgt_key_padding_mask: Optional[Tensor] = None, | |
| memory_key_padding_mask: Optional[Tensor] = None, | |
| pos: Optional[Tensor] = None, | |
| query_pos: Optional[Tensor] = None): | |
| q = k = self.with_pos_embed(tgt, query_pos) | |
| tgt2 = self.self_attn( | |
| q, | |
| k, | |
| value=tgt, | |
| attn_mask=tgt_mask, | |
| key_padding_mask=tgt_key_padding_mask)[0] | |
| tgt = tgt + self.dropout1(tgt2) | |
| tgt = self.norm1(tgt) | |
| tgt2 = self.multihead_attn( | |
| query=self.with_pos_embed(tgt, query_pos), | |
| key=self.with_pos_embed(memory, pos), | |
| value=memory, | |
| attn_mask=memory_mask, | |
| key_padding_mask=memory_key_padding_mask)[0] | |
| tgt = tgt + self.dropout2(tgt2) | |
| tgt = self.norm2(tgt) | |
| tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt)))) | |
| tgt = tgt + self.dropout3(tgt2) | |
| tgt = self.norm3(tgt) | |
| return tgt | |
| def forward_pre(self, | |
| tgt, | |
| memory, | |
| tgt_mask: Optional[Tensor] = None, | |
| memory_mask: Optional[Tensor] = None, | |
| tgt_key_padding_mask: Optional[Tensor] = None, | |
| memory_key_padding_mask: Optional[Tensor] = None, | |
| pos: Optional[Tensor] = None, | |
| query_pos: Optional[Tensor] = None): | |
| tgt2 = self.norm1(tgt) | |
| q = k = self.with_pos_embed(tgt2, query_pos) | |
| tgt2 = self.self_attn( | |
| q, | |
| k, | |
| value=tgt2, | |
| attn_mask=tgt_mask, | |
| key_padding_mask=tgt_key_padding_mask)[0] | |
| tgt = tgt + self.dropout1(tgt2) | |
| tgt2 = self.norm2(tgt) | |
| tgt2 = self.multihead_attn( | |
| query=self.with_pos_embed(tgt2, query_pos), | |
| key=self.with_pos_embed(memory, pos), | |
| value=memory, | |
| attn_mask=memory_mask, | |
| key_padding_mask=memory_key_padding_mask)[0] | |
| tgt = tgt + self.dropout2(tgt2) | |
| tgt2 = self.norm3(tgt) | |
| tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) | |
| tgt = tgt + self.dropout3(tgt2) | |
| return tgt | |
| def forward(self, | |
| tgt, | |
| memory, | |
| tgt_mask: Optional[Tensor] = None, | |
| memory_mask: Optional[Tensor] = None, | |
| tgt_key_padding_mask: Optional[Tensor] = None, | |
| memory_key_padding_mask: Optional[Tensor] = None, | |
| pos: Optional[Tensor] = None, | |
| query_pos: Optional[Tensor] = None): | |
| if self.normalize_before: | |
| return self.forward_pre(tgt, memory, tgt_mask, memory_mask, | |
| tgt_key_padding_mask, | |
| memory_key_padding_mask, pos, query_pos) | |
| return self.forward_post(tgt, memory, tgt_mask, memory_mask, | |
| tgt_key_padding_mask, memory_key_padding_mask, | |
| pos, query_pos) | |
| def _get_clones(module, N): | |
| return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) | |
| def _get_activation_fn(activation): | |
| """Return an activation function given a string.""" | |
| if activation == 'relu': | |
| return F.relu | |
| if activation == 'gelu': | |
| return F.gelu | |
| if activation == 'glu': | |
| return F.glu | |
| raise RuntimeError(F'activation should be relu/gelu, not {activation}.') | |