Spaces:
Sleeping
Sleeping
| dictionary = dict( | |
| type='Dictionary', | |
| dict_file='{{ fileDirname }}/../../../dicts/lower_english_digits.txt', | |
| with_start=True, | |
| with_end=True, | |
| same_start_end=True, | |
| with_padding=False, | |
| with_unknown=False) | |
| model = dict( | |
| type='ABINet', | |
| backbone=dict(type='ResNetABI'), | |
| encoder=dict( | |
| type='ABIEncoder', | |
| n_layers=3, | |
| n_head=8, | |
| d_model=512, | |
| d_inner=2048, | |
| dropout=0.1, | |
| max_len=8 * 32, | |
| ), | |
| decoder=dict( | |
| type='ABIFuser', | |
| vision_decoder=dict( | |
| type='ABIVisionDecoder', | |
| in_channels=512, | |
| num_channels=64, | |
| attn_height=8, | |
| attn_width=32, | |
| attn_mode='nearest', | |
| init_cfg=dict(type='Xavier', layer='Conv2d')), | |
| module_loss=dict(type='ABIModuleLoss', letter_case='lower'), | |
| postprocessor=dict(type='AttentionPostprocessor'), | |
| dictionary=dictionary, | |
| max_seq_len=26, | |
| ), | |
| data_preprocessor=dict( | |
| type='TextRecogDataPreprocessor', | |
| mean=[123.675, 116.28, 103.53], | |
| std=[58.395, 57.12, 57.375])) | |
| train_pipeline = [ | |
| dict(type='LoadImageFromFile', ignore_empty=True, min_size=2), | |
| dict(type='LoadOCRAnnotations', with_text=True), | |
| dict(type='Resize', scale=(128, 32)), | |
| dict( | |
| type='RandomApply', | |
| prob=0.5, | |
| transforms=[ | |
| dict( | |
| type='RandomChoice', | |
| transforms=[ | |
| dict( | |
| type='RandomRotate', | |
| max_angle=15, | |
| ), | |
| dict( | |
| type='TorchVisionWrapper', | |
| op='RandomAffine', | |
| degrees=15, | |
| translate=(0.3, 0.3), | |
| scale=(0.5, 2.), | |
| shear=(-45, 45), | |
| ), | |
| dict( | |
| type='TorchVisionWrapper', | |
| op='RandomPerspective', | |
| distortion_scale=0.5, | |
| p=1, | |
| ), | |
| ]) | |
| ], | |
| ), | |
| dict( | |
| type='RandomApply', | |
| prob=0.25, | |
| transforms=[ | |
| dict(type='PyramidRescale'), | |
| dict( | |
| type='mmdet.Albu', | |
| transforms=[ | |
| dict(type='GaussNoise', var_limit=(20, 20), p=0.5), | |
| dict(type='MotionBlur', blur_limit=7, p=0.5), | |
| ]), | |
| ]), | |
| dict( | |
| type='RandomApply', | |
| prob=0.25, | |
| transforms=[ | |
| dict( | |
| type='TorchVisionWrapper', | |
| op='ColorJitter', | |
| brightness=0.5, | |
| saturation=0.5, | |
| contrast=0.5, | |
| hue=0.1), | |
| ]), | |
| dict( | |
| type='PackTextRecogInputs', | |
| meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio')) | |
| ] | |
| test_pipeline = [ | |
| dict(type='LoadImageFromFile'), | |
| dict(type='Resize', scale=(128, 32)), | |
| # add loading annotation after ``Resize`` because ground truth | |
| # does not need to do resize data transform | |
| dict(type='LoadOCRAnnotations', with_text=True), | |
| dict( | |
| type='PackTextRecogInputs', | |
| meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio')) | |
| ] | |
| tta_pipeline = [ | |
| dict(type='LoadImageFromFile'), | |
| dict( | |
| type='TestTimeAug', | |
| transforms=[ | |
| [ | |
| dict( | |
| type='ConditionApply', | |
| true_transforms=[ | |
| dict( | |
| type='ImgAugWrapper', | |
| args=[dict(cls='Rot90', k=0, keep_size=False)]) | |
| ], | |
| condition="results['img_shape'][1]<results['img_shape'][0]" | |
| ), | |
| dict( | |
| type='ConditionApply', | |
| true_transforms=[ | |
| dict( | |
| type='ImgAugWrapper', | |
| args=[dict(cls='Rot90', k=1, keep_size=False)]) | |
| ], | |
| condition="results['img_shape'][1]<results['img_shape'][0]" | |
| ), | |
| dict( | |
| type='ConditionApply', | |
| true_transforms=[ | |
| dict( | |
| type='ImgAugWrapper', | |
| args=[dict(cls='Rot90', k=3, keep_size=False)]) | |
| ], | |
| condition="results['img_shape'][1]<results['img_shape'][0]" | |
| ), | |
| ], | |
| [dict(type='Resize', scale=(128, 32))], | |
| # add loading annotation after ``Resize`` because ground truth | |
| # does not need to do resize data transform | |
| [dict(type='LoadOCRAnnotations', with_text=True)], | |
| [ | |
| dict( | |
| type='PackTextRecogInputs', | |
| meta_keys=('img_path', 'ori_shape', 'img_shape', | |
| 'valid_ratio')) | |
| ] | |
| ]) | |
| ] | |