Spaces:
Sleeping
Sleeping
| # training schedule for 1x | |
| _base_ = [ | |
| '_base_marec_vit_s.py', | |
| '../_base_/datasets/union14m_train.py', | |
| '../_base_/datasets/union14m_benchmark.py', | |
| '../_base_/datasets/cute80.py', | |
| '../_base_/datasets/iiit5k.py', | |
| '../_base_/datasets/svt.py', | |
| '../_base_/datasets/svtp.py', | |
| '../_base_/datasets/icdar2013.py', | |
| '../_base_/datasets/icdar2015.py', | |
| '../_base_/default_runtime.py', | |
| '../_base_/schedules/schedule_adamw_cos_10e.py', | |
| ] | |
| # dataset settings | |
| train_list = [ | |
| _base_.union14m_challenging, _base_.union14m_hard, _base_.union14m_medium, | |
| _base_.union14m_normal, _base_.union14m_easy | |
| ] | |
| val_list = [ | |
| _base_.cute80_textrecog_test, _base_.iiit5k_textrecog_test, | |
| _base_.svt_textrecog_test, _base_.svtp_textrecog_test, | |
| _base_.icdar2013_textrecog_test, _base_.icdar2015_textrecog_test | |
| ] | |
| test_list = [ | |
| _base_.union14m_benchmark_artistic, | |
| _base_.union14m_benchmark_multi_oriented, | |
| _base_.union14m_benchmark_contextless, | |
| _base_.union14m_benchmark_curve, | |
| _base_.union14m_benchmark_incomplete, | |
| _base_.union14m_benchmark_incomplete_ori, | |
| _base_.union14m_benchmark_multi_words, | |
| _base_.union14m_benchmark_salient, | |
| _base_.union14m_benchmark_general, | |
| ] | |
| default_hooks = dict(logger=dict(type='LoggerHook', interval=50)) | |
| auto_scale_lr = dict(base_batch_size=512) | |
| train_dataset = dict( | |
| type='ConcatDataset', datasets=train_list, pipeline=_base_.train_pipeline) | |
| test_dataset = dict( | |
| type='ConcatDataset', datasets=test_list, pipeline=_base_.test_pipeline) | |
| val_dataset = dict( | |
| type='ConcatDataset', datasets=val_list, pipeline=_base_.test_pipeline) | |
| train_dataloader = dict( | |
| batch_size=128, | |
| num_workers=12, | |
| persistent_workers=True, | |
| pin_memory=True, | |
| sampler=dict(type='DefaultSampler', shuffle=True), | |
| dataset=train_dataset) | |
| test_dataloader = dict( | |
| batch_size=128, | |
| num_workers=4, | |
| persistent_workers=True, | |
| pin_memory=True, | |
| drop_last=False, | |
| sampler=dict(type='DefaultSampler', shuffle=False), | |
| dataset=test_dataset) | |
| val_dataloader = dict( | |
| batch_size=128, | |
| num_workers=4, | |
| persistent_workers=True, | |
| pin_memory=True, | |
| drop_last=False, | |
| sampler=dict(type='DefaultSampler', shuffle=False), | |
| dataset=val_dataset) | |
| val_evaluator = dict( | |
| dataset_prefixes=['CUTE80', 'IIIT5K', 'SVT', 'SVTP', 'IC13', 'IC15']) | |
| test_evaluator = dict(dataset_prefixes=[ | |
| 'artistic', 'multi-oriented', 'contextless', 'curve', 'incomplete', | |
| 'incomplete-ori', 'multi-words', 'salient', 'general' | |
| ]) | |