Spaces:
Sleeping
Sleeping
| dictionary = dict( | |
| type='Dictionary', | |
| dict_file='{{ fileDirname }}/../../../dicts/english_digits_symbols.txt', | |
| with_padding=True, | |
| with_unknown=True, | |
| same_start_end=True, | |
| with_start=True, | |
| with_end=True) | |
| model = dict( | |
| type='SATRN', | |
| backbone=dict(type='ShallowCNN', input_channels=3, hidden_dim=512), | |
| encoder=dict( | |
| type='SATRNEncoder', | |
| n_layers=12, | |
| n_head=8, | |
| d_k=512 // 8, | |
| d_v=512 // 8, | |
| d_model=512, | |
| n_position=100, | |
| d_inner=512 * 4, | |
| dropout=0.1), | |
| decoder=dict( | |
| type='NRTRDecoder', | |
| n_layers=6, | |
| d_embedding=512, | |
| n_head=8, | |
| d_model=512, | |
| d_inner=512 * 4, | |
| d_k=512 // 8, | |
| d_v=512 // 8, | |
| module_loss=dict( | |
| type='CEModuleLoss', flatten=True, ignore_first_char=True), | |
| dictionary=dictionary, | |
| max_seq_len=25, | |
| postprocessor=dict(type='AttentionPostprocessor')), | |
| data_preprocessor=dict( | |
| type='TextRecogDataPreprocessor', | |
| mean=[123.675, 116.28, 103.53], | |
| std=[58.395, 57.12, 57.375])) | |
| train_pipeline = [ | |
| dict(type='LoadImageFromFile', ignore_empty=True, min_size=0), | |
| dict(type='LoadOCRAnnotations', with_text=True), | |
| dict(type='Resize', scale=(100, 32), keep_ratio=False), | |
| dict( | |
| type='PackTextRecogInputs', | |
| meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio')) | |
| ] | |
| test_pipeline = [ | |
| dict(type='LoadImageFromFile'), | |
| dict(type='Resize', scale=(100, 32), keep_ratio=False), | |
| # add loading annotation after ``Resize`` because ground truth | |
| # does not need to do resize data transform | |
| dict(type='LoadOCRAnnotations', with_text=True), | |
| dict( | |
| type='PackTextRecogInputs', | |
| meta_keys=('img_path', 'ori_shape', 'img_shape', 'valid_ratio')) | |
| ] | |
| tta_pipeline = [ | |
| dict(type='LoadImageFromFile'), | |
| dict( | |
| type='TestTimeAug', | |
| transforms=[ | |
| [ | |
| dict( | |
| type='ConditionApply', | |
| true_transforms=[ | |
| dict( | |
| type='ImgAugWrapper', | |
| args=[dict(cls='Rot90', k=0, keep_size=False)]) | |
| ], | |
| condition="results['img_shape'][1]<results['img_shape'][0]" | |
| ), | |
| dict( | |
| type='ConditionApply', | |
| true_transforms=[ | |
| dict( | |
| type='ImgAugWrapper', | |
| args=[dict(cls='Rot90', k=1, keep_size=False)]) | |
| ], | |
| condition="results['img_shape'][1]<results['img_shape'][0]" | |
| ), | |
| dict( | |
| type='ConditionApply', | |
| true_transforms=[ | |
| dict( | |
| type='ImgAugWrapper', | |
| args=[dict(cls='Rot90', k=3, keep_size=False)]) | |
| ], | |
| condition="results['img_shape'][1]<results['img_shape'][0]" | |
| ), | |
| ], | |
| [dict(type='Resize', scale=(100, 32), keep_ratio=False)], | |
| # add loading annotation after ``Resize`` because ground truth | |
| # does not need to do resize data transform | |
| [dict(type='LoadOCRAnnotations', with_text=True)], | |
| [ | |
| dict( | |
| type='PackTextRecogInputs', | |
| meta_keys=('img_path', 'ori_shape', 'img_shape', | |
| 'valid_ratio')) | |
| ] | |
| ]) | |
| ] | |