Spaces:
Sleeping
Sleeping
| # Copyright (c) OpenMMLab. All rights reserved. | |
| import argparse | |
| import os | |
| import os.path as osp | |
| import mmcv | |
| import mmengine | |
| from mmocr.utils import dump_ocr_data | |
| def collect_files(img_dir, gt_dir): | |
| """Collect all images and their corresponding groundtruth files. | |
| Args: | |
| img_dir (str): The image directory | |
| gt_dir (str): The groundtruth directory | |
| Returns: | |
| files (list): The list of tuples (img_file, groundtruth_file) | |
| """ | |
| assert isinstance(img_dir, str) | |
| assert img_dir | |
| assert isinstance(gt_dir, str) | |
| assert gt_dir | |
| ann_list, imgs_list = [], [] | |
| for img_file in os.listdir(img_dir): | |
| ann_file = img_file.split('_')[0] + '_gt_ocr.txt' | |
| ann_list.append(osp.join(gt_dir, ann_file)) | |
| imgs_list.append(osp.join(img_dir, img_file)) | |
| files = list(zip(imgs_list, ann_list)) | |
| assert len(files), f'No images found in {img_dir}' | |
| print(f'Loaded {len(files)} images from {img_dir}') | |
| return files | |
| def collect_annotations(files, nproc=1): | |
| """Collect the annotation information. | |
| Args: | |
| files (list): The list of tuples (image_file, groundtruth_file) | |
| nproc (int): The number of process to collect annotations | |
| Returns: | |
| images (list): The list of image information dicts | |
| """ | |
| assert isinstance(files, list) | |
| assert isinstance(nproc, int) | |
| if nproc > 1: | |
| images = mmengine.track_parallel_progress( | |
| load_img_info, files, nproc=nproc) | |
| else: | |
| images = mmengine.track_progress(load_img_info, files) | |
| return images | |
| def load_img_info(files): | |
| """Load the information of one image. | |
| Args: | |
| files (tuple): The tuple of (img_file, groundtruth_file) | |
| Returns: | |
| img_info (dict): The dict of the img and annotation information | |
| """ | |
| assert isinstance(files, tuple) | |
| img_file, gt_file = files | |
| assert osp.basename(gt_file).split('_')[0] == osp.basename(gt_file).split( | |
| '_')[0] | |
| # read imgs while ignoring orientations | |
| img = mmcv.imread(img_file, 'unchanged') | |
| img_info = dict( | |
| file_name=osp.basename(img_file), | |
| height=img.shape[0], | |
| width=img.shape[1], | |
| segm_file=osp.basename(gt_file)) | |
| if osp.splitext(gt_file)[1] == '.txt': | |
| img_info = load_txt_info(gt_file, img_info) | |
| else: | |
| raise NotImplementedError | |
| return img_info | |
| def load_txt_info(gt_file, img_info): | |
| """Collect the annotation information. | |
| The annotation format is as the following: | |
| x, y, w, h, text | |
| 977, 152, 16, 49, NOME | |
| 962, 143, 12, 323, APPINHANESI BLAZEK PASSOTTO | |
| 906, 446, 12, 94, 206940361 | |
| 905, 641, 12, 44, SPTC | |
| Args: | |
| gt_file (str): The path to ground-truth | |
| img_info (dict): The dict of the img and annotation information | |
| Returns: | |
| img_info (dict): The dict of the img and annotation information | |
| """ | |
| with open(gt_file, encoding='latin1') as f: | |
| anno_info = [] | |
| for line in f: | |
| line = line.strip('\n') | |
| if line[0] == '[' or line[0] == 'x': | |
| continue | |
| ann = line.split(',') | |
| bbox = ann[0:4] | |
| bbox = [int(coord) for coord in bbox] | |
| x, y, w, h = bbox | |
| segmentation = [x, y, x + w, y, x + w, y + h, x, y + h] | |
| anno = dict( | |
| iscrowd=0, | |
| category_id=1, | |
| bbox=bbox, | |
| area=w * h, | |
| segmentation=[segmentation]) | |
| anno_info.append(anno) | |
| img_info.update(anno_info=anno_info) | |
| return img_info | |
| def split_train_val_list(full_list, val_ratio): | |
| """Split list by val_ratio. | |
| Args: | |
| full_list (list): list to be split | |
| val_ratio (float): split ratio for val set | |
| return: | |
| list(list, list): train_list and val_list | |
| """ | |
| n_total = len(full_list) | |
| offset = int(n_total * val_ratio) | |
| if n_total == 0 or offset < 1: | |
| return [], full_list | |
| val_list = full_list[:offset] | |
| train_list = full_list[offset:] | |
| return [train_list, val_list] | |
| def parse_args(): | |
| parser = argparse.ArgumentParser( | |
| description='Generate training and val set of BID ') | |
| parser.add_argument('root_path', help='Root dir path of BID') | |
| parser.add_argument( | |
| '--nproc', default=1, type=int, help='Number of processes') | |
| parser.add_argument( | |
| '--val-ratio', help='Split ratio for val set', default=0., type=float) | |
| args = parser.parse_args() | |
| return args | |
| def main(): | |
| args = parse_args() | |
| root_path = args.root_path | |
| with mmengine.Timer(print_tmpl='It takes {}s to convert BID annotation'): | |
| files = collect_files( | |
| osp.join(root_path, 'imgs'), osp.join(root_path, 'annotations')) | |
| image_infos = collect_annotations(files, nproc=args.nproc) | |
| if args.val_ratio: | |
| image_infos = split_train_val_list(image_infos, args.val_ratio) | |
| splits = ['training', 'val'] | |
| else: | |
| image_infos = [image_infos] | |
| splits = ['training'] | |
| for i, split in enumerate(splits): | |
| dump_ocr_data(image_infos[i], | |
| osp.join(root_path, 'instances_' + split + '.json'), | |
| 'textdet') | |
| if __name__ == '__main__': | |
| main() | |