maintenance
Browse files
app.py
CHANGED
|
@@ -85,30 +85,34 @@ st.set_page_config(layout="centered")
|
|
| 85 |
st.title("Multiclass Emotion Classification")
|
| 86 |
st.write("DeepMind Language Perceiver for Multiclass Emotion Classification (Eng). ")
|
| 87 |
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
# Download all models from drive
|
| 93 |
-
download_models(ids)
|
| 94 |
-
|
| 95 |
-
# Display labels
|
| 96 |
-
st.markdown(f"__Labels:__ {', '.join(labels)}")
|
| 97 |
-
|
| 98 |
-
# Model selection
|
| 99 |
-
left, right = st.columns([4, 2])
|
| 100 |
-
inputs = left.text_area('', max_chars=4096, value='This is a space about multiclass emotion classification. Write '
|
| 101 |
-
'something here to see what happens!')
|
| 102 |
-
model_path = right.selectbox('', options=[k for k in ids], index=0, help='Model to use. ')
|
| 103 |
-
split = right.checkbox('Split into sentences', value=True)
|
| 104 |
-
model = load_model(model_path=f"model/{model_path}.pt")
|
| 105 |
-
right.write(model.device)
|
| 106 |
-
|
| 107 |
-
if split:
|
| 108 |
-
if not inputs.isspace() and inputs != "":
|
| 109 |
-
with st.spinner('Processing text... This may take a while.'):
|
| 110 |
-
left.write(model(inputs_to_dataset(sent_tokenize(inputs)), batch_size=1))
|
| 111 |
else:
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
st.title("Multiclass Emotion Classification")
|
| 86 |
st.write("DeepMind Language Perceiver for Multiclass Emotion Classification (Eng). ")
|
| 87 |
|
| 88 |
+
maintenance = True
|
| 89 |
+
if maintenance:
|
| 90 |
+
print("Unavailable for now (file downloads limit). ")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
else:
|
| 92 |
+
# Variables
|
| 93 |
+
ids = {'perceiver-go-emotions': st.secrets['model_key']}
|
| 94 |
+
labels = load_labels()
|
| 95 |
+
|
| 96 |
+
# Download all models from drive
|
| 97 |
+
download_models(ids)
|
| 98 |
+
|
| 99 |
+
# Display labels
|
| 100 |
+
st.markdown(f"__Labels:__ {', '.join(labels)}")
|
| 101 |
+
|
| 102 |
+
# Model selection
|
| 103 |
+
left, right = st.columns([4, 2])
|
| 104 |
+
inputs = left.text_area('', max_chars=4096, value='This is a space about multiclass emotion classification. Write '
|
| 105 |
+
'something here to see what happens!')
|
| 106 |
+
model_path = right.selectbox('', options=[k for k in ids], index=0, help='Model to use. ')
|
| 107 |
+
split = right.checkbox('Split into sentences', value=True)
|
| 108 |
+
model = load_model(model_path=f"model/{model_path}.pt")
|
| 109 |
+
right.write(model.device)
|
| 110 |
+
|
| 111 |
+
if split:
|
| 112 |
+
if not inputs.isspace() and inputs != "":
|
| 113 |
+
with st.spinner('Processing text... This may take a while.'):
|
| 114 |
+
left.write(model(inputs_to_dataset(sent_tokenize(inputs)), batch_size=1))
|
| 115 |
+
else:
|
| 116 |
+
if not inputs.isspace() and inputs != "":
|
| 117 |
+
with st.spinner('Processing text... This may take a while.'):
|
| 118 |
+
left.write(model(inputs_to_dataset([inputs]), batch_size=1))
|