Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate | |
| from llama_index.llms.huggingface import HuggingFaceInferenceAPI | |
| from dotenv import load_dotenv | |
| from llama_index.embeddings.huggingface import HuggingFaceEmbedding | |
| from llama_index.core import Settings | |
| import os | |
| from youtube_transcript_api import YouTubeTranscriptApi | |
| import shutil | |
| import time | |
| # Load environment variables | |
| load_dotenv() | |
| icons = {"assistant": "robot.png", "user": "man-kddi.png"} | |
| # Configure the Llama index settings | |
| Settings.llm = HuggingFaceInferenceAPI( | |
| model_name="mistralai/Mistral-7B-Instruct-v0.2", | |
| tokenizer_name="mistralai/Mistral-7B-Instruct-v0.2", | |
| context_window=3000, | |
| token=os.getenv("HF_TOKEN"), | |
| max_new_tokens=512, | |
| generate_kwargs={"temperature": 0.1}, | |
| ) | |
| Settings.embed_model = HuggingFaceEmbedding( | |
| model_name="BAAI/bge-small-en-v1.5" | |
| ) | |
| # Define the directory for persistent storage and data | |
| PERSIST_DIR = "./db" | |
| DATA_DIR = "data" | |
| # Ensure data directory exists | |
| os.makedirs(DATA_DIR, exist_ok=True) | |
| os.makedirs(PERSIST_DIR, exist_ok=True) | |
| def displayPDF(file): | |
| with open(file, "rb") as f: | |
| base64_pdf = base64.b64encode(f.read()).decode('utf-8') | |
| pdf_display = f'<iframe src="data:application/pdf;base64,{base64_pdf}" width="100%" height="600" type="application/pdf"></iframe>' | |
| st.markdown(pdf_display, unsafe_allow_html=True) | |
| def data_ingestion(): | |
| documents = SimpleDirectoryReader(DATA_DIR).load_data() | |
| print(documents) | |
| storage_context = StorageContext.from_defaults() | |
| index = VectorStoreIndex.from_documents(documents,show_progress=True) | |
| index.storage_context.persist(persist_dir=PERSIST_DIR) | |
| def extract_transcript_details(youtube_video_url): | |
| try: | |
| video_id=youtube_video_url.split("=")[1] | |
| transcript_text=YouTubeTranscriptApi.get_transcript(video_id) | |
| transcript = "" | |
| for i in transcript_text: | |
| transcript += " " + i["text"] | |
| return transcript | |
| except Exception as e: | |
| st.error(e) | |
| def remove_old_files(): | |
| # Specify the directory path you want to clear | |
| directory_path = "data" | |
| # Remove all files and subdirectories in the specified directory | |
| shutil.rmtree(directory_path) | |
| # Recreate an empty directory if needed | |
| os.makedirs(directory_path) | |
| def handle_query(query): | |
| storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR) | |
| index = load_index_from_storage(storage_context) | |
| chat_text_qa_msgs = [ | |
| ( | |
| "user", | |
| """You are a Q&A assistant named CHATTO, created by Suriya. your main goal is to provide answers as accurately as possible, based on the instructions and context you have been given. If a question does not match the provided context or is outside the scope of the document, kindly advise the user to ask questions within the context of the document. | |
| Context: | |
| {context_str} | |
| Question: | |
| {query_str} | |
| """ | |
| ) | |
| ] | |
| text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) | |
| query_engine = index.as_query_engine(text_qa_template=text_qa_template) | |
| answer = query_engine.query(query) | |
| final_ans = [] | |
| if hasattr(answer, 'response'): | |
| final_ans.append(answer.response) | |
| elif isinstance(answer, dict) and 'response' in answer: | |
| final_ans.append(answer['response']) | |
| else: | |
| final_ans.append("Sorry, I couldn't find an answer.") | |
| ans = " ".join(final_ans) | |
| for i in ans: | |
| yield str(i) | |
| time.sleep(0.01) | |
| # Streamlit app initialization | |
| st.title("Chat with your PDF📄") | |
| st.markdown("Built by [Suriya❤️](https://github.com/theSuriya)") | |
| st.markdown("chat here👇") | |
| if 'messages' not in st.session_state: | |
| st.session_state.messages = [{'role': 'assistant', "content": 'Hello! Upload a PDF and ask me anything about its content.'}] | |
| # Display or clear chat messages | |
| for message in st.session_state.messages: | |
| with st.chat_message(message["role"],avatar=icons[message["role"]]): | |
| st.write(message["content"]) | |
| with st.sidebar: | |
| st.title("Menu:") | |
| uploaded_file = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button") | |
| video_url = st.text_input("Enter Youtube Video Link: ") | |
| if st.button("Submit & Process"): | |
| with st.spinner("Processing..."): | |
| if len(os.listdir("data")) !=0: | |
| remove_old_files() | |
| if uploaded_file: | |
| filepath = "data/saved_pdf.pdf" | |
| with open(filepath, "wb") as f: | |
| f.write(uploaded_file.getbuffer()) | |
| if video_url: | |
| extracted_text = extract_transcript_details(video_url) | |
| with open("data/saved_text.txt", "w") as file: | |
| file.write(extracted_text) | |
| data_ingestion() # Process PDF every time new file is uploaded | |
| st.success("Done") | |
| user_prompt = st.chat_input("Ask me anything about the content of the PDF:") | |
| if user_prompt and (video_url or uploaded_file): | |
| st.session_state.messages.append({'role': 'user', "content": user_prompt}) | |
| with st.chat_message("user", avatar="man-kddi.png"): | |
| st.write(user_prompt) | |
| # Generate a new response if last message is not from assistant | |
| if st.session_state.messages[-1]["role"] != "assistant": | |
| with st.chat_message("assistant",avatar="robot.png"): | |
| response = handle_query(user_prompt) | |
| full_response = st.write_stream(response) | |
| message = {"role": "assistant", "content": full_response} | |
| st.session_state.messages.append(message) |