Spaces:
Runtime error
Runtime error
Upload 9 files
Browse files- .gitattributes +1 -0
- app.py +365 -0
- requirements.txt +7 -0
- static/css/style.css +50 -0
- static/js/script.js +137 -0
- static/uploads/539841_1_En_23_Fig6_HTML.png +0 -0
- static/uploads/benchmark.jpg +3 -0
- static/uploads/download (1).png +0 -0
- static/uploads/p0fcgbjj.png +0 -0
- templates/index.html +55 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
static/uploads/benchmark.jpg filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
|
@@ -0,0 +1,365 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from flask import Flask, render_template, request, jsonify, url_for, session, send_file, Response
|
| 2 |
+
import torch
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import re
|
| 6 |
+
import os
|
| 7 |
+
import base64
|
| 8 |
+
import json
|
| 9 |
+
import traceback
|
| 10 |
+
from io import BytesIO
|
| 11 |
+
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
|
| 12 |
+
|
| 13 |
+
app = Flask(__name__)
|
| 14 |
+
app.secret_key = os.urandom(24) # Required for session
|
| 15 |
+
UPLOAD_FOLDER = 'static/uploads/'
|
| 16 |
+
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
| 17 |
+
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg'} # Add allowed extensions
|
| 18 |
+
|
| 19 |
+
if not os.path.exists(UPLOAD_FOLDER):
|
| 20 |
+
os.makedirs(UPLOAD_FOLDER)
|
| 21 |
+
|
| 22 |
+
# Load PaliGemma model and processor (load once)
|
| 23 |
+
def load_paligemma_model():
|
| 24 |
+
try:
|
| 25 |
+
print("Loading PaliGemma model from local path...")
|
| 26 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 27 |
+
print(f"Using device: {device}")
|
| 28 |
+
|
| 29 |
+
# Specify the local path relative to your project structure
|
| 30 |
+
local_model_path = os.path.join(os.path.dirname(__file__), 'Model') # Update this path
|
| 31 |
+
|
| 32 |
+
# Load model and processor from the specified local path
|
| 33 |
+
model = PaliGemmaForConditionalGeneration.from_pretrained(
|
| 34 |
+
local_model_path,
|
| 35 |
+
torch_dtype=torch.float16
|
| 36 |
+
)
|
| 37 |
+
processor = AutoProcessor.from_pretrained(local_model_path)
|
| 38 |
+
model = model.to(device)
|
| 39 |
+
print("Model loaded successfully")
|
| 40 |
+
return model, processor, device
|
| 41 |
+
except Exception as e:
|
| 42 |
+
print(f"Error loading model: {str(e)}")
|
| 43 |
+
traceback.print_exc()
|
| 44 |
+
raise
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
# Store the model in the app context
|
| 48 |
+
with app.app_context():
|
| 49 |
+
app.paligemma_model, app.paligemma_processor, app.device = load_paligemma_model()
|
| 50 |
+
|
| 51 |
+
# Helper function to check allowed extensions
|
| 52 |
+
def allowed_file(filename):
|
| 53 |
+
return '.' in filename and \
|
| 54 |
+
filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
|
| 55 |
+
|
| 56 |
+
# Clean model output function - improved like the Streamlit version
|
| 57 |
+
def clean_model_output(text):
|
| 58 |
+
if not text:
|
| 59 |
+
print("Warning: Empty text passed to clean_model_output")
|
| 60 |
+
return ""
|
| 61 |
+
|
| 62 |
+
# Check if the entire response is a print statement and extract its content
|
| 63 |
+
print_match = re.search(r'^print\(["\'](.+?)["\']\)$', text.strip())
|
| 64 |
+
if print_match:
|
| 65 |
+
return print_match.group(1)
|
| 66 |
+
|
| 67 |
+
# Remove all print statements
|
| 68 |
+
text = re.sub(r'print\(.+?\)', '', text, flags=re.DOTALL)
|
| 69 |
+
|
| 70 |
+
# Remove Python code formatting artifacts
|
| 71 |
+
text = re.sub(r'```python|```', '', text)
|
| 72 |
+
|
| 73 |
+
return text.strip()
|
| 74 |
+
|
| 75 |
+
# Analyze chart function
|
| 76 |
+
def analyze_chart_with_paligemma(image, query, use_cot=False):
|
| 77 |
+
try:
|
| 78 |
+
print(f"Starting analysis with query: {query}")
|
| 79 |
+
print(f"Use CoT: {use_cot}")
|
| 80 |
+
|
| 81 |
+
model = app.paligemma_model
|
| 82 |
+
processor = app.paligemma_processor
|
| 83 |
+
device = app.device
|
| 84 |
+
|
| 85 |
+
# Add program of thought prefix if CoT is enabled (matching Streamlit version)
|
| 86 |
+
if use_cot and not query.startswith("program of thought:"):
|
| 87 |
+
modified_query = f"program of thought: {query}"
|
| 88 |
+
else:
|
| 89 |
+
modified_query = query
|
| 90 |
+
|
| 91 |
+
print(f"Modified query: {modified_query}")
|
| 92 |
+
|
| 93 |
+
# Process inputs
|
| 94 |
+
try:
|
| 95 |
+
print("Processing inputs...")
|
| 96 |
+
inputs = processor(text=modified_query, images=image, return_tensors="pt")
|
| 97 |
+
print(f"Input keys: {inputs.keys()}")
|
| 98 |
+
prompt_length = inputs['input_ids'].shape[1] # Store prompt length for later use
|
| 99 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 100 |
+
except Exception as e:
|
| 101 |
+
print(f"Error processing inputs: {str(e)}")
|
| 102 |
+
traceback.print_exc()
|
| 103 |
+
return f"Error processing inputs: {str(e)}"
|
| 104 |
+
|
| 105 |
+
# Generate output
|
| 106 |
+
try:
|
| 107 |
+
print("Generating output...")
|
| 108 |
+
with torch.no_grad():
|
| 109 |
+
generate_ids = model.generate(
|
| 110 |
+
**inputs,
|
| 111 |
+
num_beams=4,
|
| 112 |
+
max_new_tokens=512,
|
| 113 |
+
output_scores=True,
|
| 114 |
+
return_dict_in_generate=True
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
output_text = processor.batch_decode(
|
| 118 |
+
generate_ids.sequences[:, prompt_length:],
|
| 119 |
+
skip_special_tokens=True,
|
| 120 |
+
clean_up_tokenization_spaces=False
|
| 121 |
+
)[0]
|
| 122 |
+
|
| 123 |
+
print(f"Raw output text: {output_text}")
|
| 124 |
+
cleaned_output = clean_model_output(output_text)
|
| 125 |
+
print(f"Cleaned output text: {cleaned_output}")
|
| 126 |
+
return cleaned_output
|
| 127 |
+
except Exception as e:
|
| 128 |
+
print(f"Error generating output: {str(e)}")
|
| 129 |
+
traceback.print_exc()
|
| 130 |
+
return f"Error generating output: {str(e)}"
|
| 131 |
+
|
| 132 |
+
except Exception as e:
|
| 133 |
+
print(f"Error in analyze_chart_with_paligemma: {str(e)}")
|
| 134 |
+
traceback.print_exc()
|
| 135 |
+
return f"Error: {str(e)}"
|
| 136 |
+
|
| 137 |
+
# Extract data points function - updated to match Streamlit version
|
| 138 |
+
def extract_data_points(image):
|
| 139 |
+
print("Starting data extraction...")
|
| 140 |
+
try:
|
| 141 |
+
# Special query to extract data points - same as Streamlit
|
| 142 |
+
extraction_query = "program of thought: Extract all data points from this chart. List each category or series and all its corresponding values in a structured format."
|
| 143 |
+
|
| 144 |
+
print(f"Using extraction query: {extraction_query}")
|
| 145 |
+
result = analyze_chart_with_paligemma(image, extraction_query, use_cot=True)
|
| 146 |
+
print(f"Extraction result: {result}")
|
| 147 |
+
|
| 148 |
+
# Parse the result into a DataFrame using the improved parser
|
| 149 |
+
df = parse_chart_data(result)
|
| 150 |
+
return df
|
| 151 |
+
except Exception as e:
|
| 152 |
+
print(f"Error extracting data points: {str(e)}")
|
| 153 |
+
traceback.print_exc()
|
| 154 |
+
return pd.DataFrame({'Error': [str(e)]})
|
| 155 |
+
|
| 156 |
+
# Parse chart data function - completely revamped to match Streamlit's implementation
|
| 157 |
+
def parse_chart_data(text):
|
| 158 |
+
try:
|
| 159 |
+
# Clean the text from print statements first
|
| 160 |
+
text = clean_model_output(text)
|
| 161 |
+
print(f"Parsing cleaned text: {text}")
|
| 162 |
+
|
| 163 |
+
data = {}
|
| 164 |
+
lines = text.split('\n')
|
| 165 |
+
current_category = None
|
| 166 |
+
|
| 167 |
+
# First pass: Look for category and value pairs
|
| 168 |
+
for line in lines:
|
| 169 |
+
if not line.strip():
|
| 170 |
+
continue
|
| 171 |
+
|
| 172 |
+
if ':' in line and not re.search(r'\d+\.\d+', line):
|
| 173 |
+
current_category = line.split(':')[0].strip()
|
| 174 |
+
data[current_category] = []
|
| 175 |
+
elif current_category and (re.search(r'\d+', line) or ',' in line):
|
| 176 |
+
value_match = re.findall(r'[-+]?\d*\.\d+|\d+', line)
|
| 177 |
+
if value_match:
|
| 178 |
+
data[current_category].extend(value_match)
|
| 179 |
+
|
| 180 |
+
# Second pass: If no categories found, try alternative pattern matching
|
| 181 |
+
if not data:
|
| 182 |
+
table_pattern = r'(\w+(?:\s\w+)*)\s*[:|]\s*((?:\d+(?:\.\d+)?(?:\s*,\s*\d+(?:\.\d+)?)*)|(?:\d+(?:\.\d+)?))'
|
| 183 |
+
matches = re.findall(table_pattern, text)
|
| 184 |
+
for category, values in matches:
|
| 185 |
+
category = category.strip()
|
| 186 |
+
if category not in data:
|
| 187 |
+
data[category] = []
|
| 188 |
+
if ',' in values:
|
| 189 |
+
values = [v.strip() for v in values.split(',')]
|
| 190 |
+
else:
|
| 191 |
+
values = [values.strip()]
|
| 192 |
+
data[category].extend(values)
|
| 193 |
+
|
| 194 |
+
# Convert all values to float where possible
|
| 195 |
+
for key in data:
|
| 196 |
+
data[key] = [float(val) if re.match(r'^[-+]?\d*\.?\d+$', val) else val for val in data[key]]
|
| 197 |
+
|
| 198 |
+
# Create DataFrame
|
| 199 |
+
if data:
|
| 200 |
+
df = pd.DataFrame(data)
|
| 201 |
+
print(f"Successfully parsed data: {df.head()}")
|
| 202 |
+
else:
|
| 203 |
+
df = pd.DataFrame({'Extracted_Text': [text]})
|
| 204 |
+
print("Could not extract structured data, returning raw text")
|
| 205 |
+
|
| 206 |
+
return df
|
| 207 |
+
except Exception as e:
|
| 208 |
+
print(f"Error parsing chart data: {str(e)}")
|
| 209 |
+
traceback.print_exc()
|
| 210 |
+
return pd.DataFrame({'Raw_Text': [text]})
|
| 211 |
+
|
| 212 |
+
@app.route('/')
|
| 213 |
+
def index():
|
| 214 |
+
image_url = session.get('image_url', None)
|
| 215 |
+
return render_template('index.html', image_url=image_url)
|
| 216 |
+
|
| 217 |
+
@app.route('/upload', methods=['POST'])
|
| 218 |
+
def upload_image():
|
| 219 |
+
try:
|
| 220 |
+
if 'image' not in request.files:
|
| 221 |
+
return jsonify({"error": "No file uploaded"}), 400
|
| 222 |
+
|
| 223 |
+
file = request.files['image']
|
| 224 |
+
if file.filename == '':
|
| 225 |
+
return jsonify({"error": "No selected file"}), 400
|
| 226 |
+
|
| 227 |
+
if not allowed_file(file.filename):
|
| 228 |
+
return jsonify({"error": "Invalid file type"}), 400
|
| 229 |
+
|
| 230 |
+
filename = file.filename
|
| 231 |
+
file_path = os.path.join(app.config['UPLOAD_FOLDER'], filename)
|
| 232 |
+
file.save(file_path)
|
| 233 |
+
|
| 234 |
+
session['image_url'] = url_for('static', filename=f'uploads/{filename}')
|
| 235 |
+
session['image_filename'] = filename
|
| 236 |
+
print(f"Image uploaded: {filename}")
|
| 237 |
+
|
| 238 |
+
return jsonify({"image_url": session['image_url']})
|
| 239 |
+
|
| 240 |
+
except Exception as e:
|
| 241 |
+
print(f"Error in upload_image: {str(e)}")
|
| 242 |
+
traceback.print_exc()
|
| 243 |
+
return jsonify({"error": str(e)}), 500
|
| 244 |
+
|
| 245 |
+
@app.route('/analyze', methods=['POST'])
|
| 246 |
+
def analyze_chart():
|
| 247 |
+
try:
|
| 248 |
+
query = request.form['query']
|
| 249 |
+
use_cot = request.form.get('use_cot') == 'true'
|
| 250 |
+
image_filename = session.get('image_filename')
|
| 251 |
+
|
| 252 |
+
if not image_filename:
|
| 253 |
+
return jsonify({"error": "No image found in session. Please upload an image first."}), 400
|
| 254 |
+
|
| 255 |
+
image_path = os.path.join(app.config['UPLOAD_FOLDER'], image_filename)
|
| 256 |
+
|
| 257 |
+
if not os.path.exists(image_path):
|
| 258 |
+
return jsonify({"error": "Image not found. Please upload again."}), 400
|
| 259 |
+
|
| 260 |
+
image = Image.open(image_path).convert('RGB')
|
| 261 |
+
answer = analyze_chart_with_paligemma(image, query, use_cot)
|
| 262 |
+
|
| 263 |
+
return jsonify({"answer": answer})
|
| 264 |
+
|
| 265 |
+
except Exception as e:
|
| 266 |
+
print(f"Error in analyze_chart: {str(e)}")
|
| 267 |
+
traceback.print_exc()
|
| 268 |
+
return jsonify({"error": str(e)})
|
| 269 |
+
|
| 270 |
+
@app.route('/extract', methods=['POST'])
|
| 271 |
+
def extract_data():
|
| 272 |
+
try:
|
| 273 |
+
image_filename = session.get('image_filename')
|
| 274 |
+
|
| 275 |
+
if not image_filename:
|
| 276 |
+
return jsonify({"error": "No image found in session. Please upload an image first."}), 400
|
| 277 |
+
|
| 278 |
+
image_path = os.path.join(app.config['UPLOAD_FOLDER'], image_filename)
|
| 279 |
+
|
| 280 |
+
if not os.path.exists(image_path):
|
| 281 |
+
return jsonify({"error": "Image not found. Please upload again."}), 400
|
| 282 |
+
|
| 283 |
+
image = Image.open(image_path).convert('RGB')
|
| 284 |
+
df = extract_data_points(image)
|
| 285 |
+
|
| 286 |
+
# Check if DataFrame is empty or contains only error messages
|
| 287 |
+
if df.empty:
|
| 288 |
+
return jsonify({"error": "Could not extract data from the image"}), 400
|
| 289 |
+
|
| 290 |
+
# Convert DataFrame to CSV data
|
| 291 |
+
csv_data = df.to_csv(index=False)
|
| 292 |
+
print(f"CSV data generated: {csv_data[:100]}...") # Print first 100 chars
|
| 293 |
+
|
| 294 |
+
# Encode CSV data to base64
|
| 295 |
+
csv_base64 = base64.b64encode(csv_data.encode()).decode('utf-8')
|
| 296 |
+
|
| 297 |
+
return jsonify({"csv_data": csv_base64})
|
| 298 |
+
|
| 299 |
+
except Exception as e:
|
| 300 |
+
print(f"Error in extract_data: {str(e)}")
|
| 301 |
+
traceback.print_exc()
|
| 302 |
+
return jsonify({"error": str(e)})
|
| 303 |
+
|
| 304 |
+
@app.route('/download_csv')
|
| 305 |
+
def download_csv():
|
| 306 |
+
try:
|
| 307 |
+
print("Download CSV route called")
|
| 308 |
+
image_filename = session.get('image_filename')
|
| 309 |
+
|
| 310 |
+
if not image_filename:
|
| 311 |
+
print("No image in session")
|
| 312 |
+
return jsonify({"error": "No image found in session. Please upload an image first."}), 400
|
| 313 |
+
|
| 314 |
+
image_path = os.path.join(app.config['UPLOAD_FOLDER'], image_filename)
|
| 315 |
+
print(f"Looking for image at: {image_path}")
|
| 316 |
+
|
| 317 |
+
if not os.path.exists(image_path):
|
| 318 |
+
print("Image file not found")
|
| 319 |
+
return jsonify({"error": "Image not found. Please upload again."}), 400
|
| 320 |
+
|
| 321 |
+
print("Loading image")
|
| 322 |
+
image = Image.open(image_path).convert('RGB')
|
| 323 |
+
print("Extracting data points")
|
| 324 |
+
df = extract_data_points(image)
|
| 325 |
+
|
| 326 |
+
print(f"DataFrame: {df}")
|
| 327 |
+
|
| 328 |
+
# Create a BytesIO object to hold the CSV data in memory
|
| 329 |
+
csv_buffer = BytesIO()
|
| 330 |
+
df.to_csv(csv_buffer, index=False, encoding='utf-8')
|
| 331 |
+
csv_buffer.seek(0) # Reset the buffer's position to the beginning
|
| 332 |
+
|
| 333 |
+
# Debug: print CSV content
|
| 334 |
+
csv_content = csv_buffer.getvalue().decode('utf-8')
|
| 335 |
+
print(f"CSV Content: {csv_content}")
|
| 336 |
+
csv_buffer.seek(0) # Reset buffer position again after reading
|
| 337 |
+
|
| 338 |
+
print("Preparing response")
|
| 339 |
+
# Create direct response with CSV data
|
| 340 |
+
response = Response(
|
| 341 |
+
csv_buffer.getvalue(),
|
| 342 |
+
mimetype='text/csv',
|
| 343 |
+
headers={
|
| 344 |
+
'Content-Disposition': 'attachment; filename=extracted_data.csv',
|
| 345 |
+
'Content-Type': 'text/csv'
|
| 346 |
+
}
|
| 347 |
+
)
|
| 348 |
+
|
| 349 |
+
print("Returning CSV response")
|
| 350 |
+
return response
|
| 351 |
+
|
| 352 |
+
except Exception as e:
|
| 353 |
+
print(f"Error in download_csv: {str(e)}")
|
| 354 |
+
traceback.print_exc()
|
| 355 |
+
return jsonify({"error": str(e)}), 500
|
| 356 |
+
|
| 357 |
+
# Create a utility function to match the Streamlit version
|
| 358 |
+
def get_csv_download_link(df, filename="chart_data.csv"):
|
| 359 |
+
csv = df.to_csv(index=False)
|
| 360 |
+
b64 = base64.b64encode(csv.encode()).decode()
|
| 361 |
+
href = f'<a href="data:file/csv;base64,{b64}" download="{filename}">Download CSV File</a>'
|
| 362 |
+
return href
|
| 363 |
+
|
| 364 |
+
if __name__ == '__main__':
|
| 365 |
+
app.run(debug=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
flask
|
| 2 |
+
torch
|
| 3 |
+
transformers
|
| 4 |
+
pillow
|
| 5 |
+
requests
|
| 6 |
+
pandas
|
| 7 |
+
matplotlib
|
static/css/style.css
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
body {
|
| 2 |
+
font-family: sans-serif;
|
| 3 |
+
margin: 20px;
|
| 4 |
+
}
|
| 5 |
+
|
| 6 |
+
h1 {
|
| 7 |
+
text-align: center;
|
| 8 |
+
}
|
| 9 |
+
|
| 10 |
+
#uploadSection,
|
| 11 |
+
#imageSection,
|
| 12 |
+
#analysisSection,
|
| 13 |
+
#extractSection,
|
| 14 |
+
#downloadSection {
|
| 15 |
+
margin-bottom: 20px;
|
| 16 |
+
padding: 10px;
|
| 17 |
+
border: 1px solid #ddd;
|
| 18 |
+
}
|
| 19 |
+
|
| 20 |
+
label {
|
| 21 |
+
display: block;
|
| 22 |
+
margin-bottom: 5px;
|
| 23 |
+
}
|
| 24 |
+
|
| 25 |
+
input[type="text"],
|
| 26 |
+
input[type="file"] {
|
| 27 |
+
width: 100%;
|
| 28 |
+
padding: 8px;
|
| 29 |
+
margin-bottom: 10px;
|
| 30 |
+
border: 1px solid #ccc;
|
| 31 |
+
box-sizing: border-box;
|
| 32 |
+
}
|
| 33 |
+
|
| 34 |
+
button {
|
| 35 |
+
background-color: #4CAF50;
|
| 36 |
+
color: white;
|
| 37 |
+
padding: 10px 15px;
|
| 38 |
+
border: none;
|
| 39 |
+
cursor: pointer;
|
| 40 |
+
}
|
| 41 |
+
|
| 42 |
+
button:hover {
|
| 43 |
+
background-color: #3e8e41;
|
| 44 |
+
}
|
| 45 |
+
|
| 46 |
+
#analysisResults {
|
| 47 |
+
margin-top: 10px;
|
| 48 |
+
padding: 10px;
|
| 49 |
+
border: 1px solid #ddd;
|
| 50 |
+
}
|
static/js/script.js
ADDED
|
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
document.addEventListener('DOMContentLoaded', function() {
|
| 2 |
+
const uploadForm = document.getElementById('uploadForm');
|
| 3 |
+
const uploadStatus = document.getElementById('uploadStatus');
|
| 4 |
+
const imageSection = document.getElementById('imageSection');
|
| 5 |
+
const chartPreview = document.getElementById('chartPreview');
|
| 6 |
+
const analysisSection = document.getElementById('analysisSection');
|
| 7 |
+
const analysisResults = document.getElementById('analysisResults');
|
| 8 |
+
const analyzeButton = document.getElementById('analyzeButton');
|
| 9 |
+
const queryInput = document.getElementById('query');
|
| 10 |
+
const useCotCheckbox = document.getElementById('use_cot');
|
| 11 |
+
const extractSection = document.getElementById('extractSection');
|
| 12 |
+
const extractButton = document.getElementById('extractButton');
|
| 13 |
+
const downloadSection = document.getElementById('downloadSection');
|
| 14 |
+
const downloadLink = document.getElementById('downloadLink');
|
| 15 |
+
const extractStatus = document.getElementById('extractStatus');
|
| 16 |
+
|
| 17 |
+
// Function to show a message
|
| 18 |
+
function showMessage(element, message, isError = false) {
|
| 19 |
+
element.textContent = message;
|
| 20 |
+
element.style.color = isError ? 'red' : 'green';
|
| 21 |
+
}
|
| 22 |
+
|
| 23 |
+
// Function to clear a message
|
| 24 |
+
function clearMessage(element) {
|
| 25 |
+
element.textContent = '';
|
| 26 |
+
}
|
| 27 |
+
|
| 28 |
+
// Handle image upload
|
| 29 |
+
uploadForm.addEventListener('submit', async function(event) {
|
| 30 |
+
event.preventDefault();
|
| 31 |
+
clearMessage(uploadStatus);
|
| 32 |
+
|
| 33 |
+
const formData = new FormData(uploadForm);
|
| 34 |
+
|
| 35 |
+
try {
|
| 36 |
+
const response = await fetch('/upload', {
|
| 37 |
+
method: 'POST',
|
| 38 |
+
body: formData
|
| 39 |
+
});
|
| 40 |
+
|
| 41 |
+
const data = await response.json();
|
| 42 |
+
|
| 43 |
+
if (data.error) {
|
| 44 |
+
showMessage(uploadStatus, data.error, true);
|
| 45 |
+
imageSection.style.display = 'none';
|
| 46 |
+
analysisSection.style.display = 'none';
|
| 47 |
+
extractSection.style.display = 'none';
|
| 48 |
+
downloadSection.style.display = 'none';
|
| 49 |
+
|
| 50 |
+
} else {
|
| 51 |
+
chartPreview.src = data.image_url;
|
| 52 |
+
imageSection.style.display = 'block';
|
| 53 |
+
analysisSection.style.display = 'block';
|
| 54 |
+
extractSection.style.display = 'block';
|
| 55 |
+
downloadSection.style.display = 'none'; // Hide initially
|
| 56 |
+
showMessage(uploadStatus, 'Image uploaded successfully!');
|
| 57 |
+
|
| 58 |
+
}
|
| 59 |
+
} catch (error) {
|
| 60 |
+
showMessage(uploadStatus, 'An error occurred during upload.', true);
|
| 61 |
+
console.error('Upload error:', error);
|
| 62 |
+
imageSection.style.display = 'none';
|
| 63 |
+
analysisSection.style.display = 'none';
|
| 64 |
+
extractSection.style.display = 'none';
|
| 65 |
+
downloadSection.style.display = 'none';
|
| 66 |
+
}
|
| 67 |
+
});
|
| 68 |
+
|
| 69 |
+
// Handle analyze chart
|
| 70 |
+
analyzeButton.addEventListener('click', async function() {
|
| 71 |
+
clearMessage(analysisResults);
|
| 72 |
+
|
| 73 |
+
const query = queryInput.value;
|
| 74 |
+
const useCot = useCotCheckbox.checked;
|
| 75 |
+
|
| 76 |
+
if (!query) {
|
| 77 |
+
showMessage(analysisResults, 'Please enter a question.', true);
|
| 78 |
+
return;
|
| 79 |
+
}
|
| 80 |
+
|
| 81 |
+
const formData = new FormData();
|
| 82 |
+
formData.append('query', query);
|
| 83 |
+
formData.append('use_cot', useCot);
|
| 84 |
+
|
| 85 |
+
try {
|
| 86 |
+
const response = await fetch('/analyze', {
|
| 87 |
+
method: 'POST',
|
| 88 |
+
body: formData
|
| 89 |
+
});
|
| 90 |
+
|
| 91 |
+
const data = await response.json();
|
| 92 |
+
|
| 93 |
+
if (data.error) {
|
| 94 |
+
showMessage(analysisResults, data.error, true);
|
| 95 |
+
} else {
|
| 96 |
+
analysisResults.textContent = 'Answer: ' + data.answer;
|
| 97 |
+
analysisResults.style.color = 'black';
|
| 98 |
+
}
|
| 99 |
+
} catch (error) {
|
| 100 |
+
showMessage(analysisResults, 'An error occurred during analysis.', true);
|
| 101 |
+
console.error('Analysis error:', error);
|
| 102 |
+
}
|
| 103 |
+
});
|
| 104 |
+
|
| 105 |
+
// Handle extract data
|
| 106 |
+
extractButton.addEventListener('click', async function() {
|
| 107 |
+
clearMessage(extractStatus);
|
| 108 |
+
downloadSection.style.display = 'none'; // Hide until data is ready
|
| 109 |
+
|
| 110 |
+
try {
|
| 111 |
+
const response = await fetch('/extract', {
|
| 112 |
+
method: 'POST'
|
| 113 |
+
});
|
| 114 |
+
|
| 115 |
+
const data = await response.json();
|
| 116 |
+
|
| 117 |
+
if (data.error) {
|
| 118 |
+
showMessage(extractStatus, data.error, true);
|
| 119 |
+
} else {
|
| 120 |
+
// CSV data is in base64 format
|
| 121 |
+
const csvData = atob(data.csv_data); // Decode base64
|
| 122 |
+
const blob = new Blob([csvData], { type: 'text/csv' });
|
| 123 |
+
const url = URL.createObjectURL(blob);
|
| 124 |
+
|
| 125 |
+
downloadLink.href = url;
|
| 126 |
+
downloadLink.style.display = 'inline'; // Show the download link
|
| 127 |
+
downloadSection.style.display = 'block'; // Show the whole section
|
| 128 |
+
|
| 129 |
+
showMessage(extractStatus, 'Data extracted successfully!');
|
| 130 |
+
}
|
| 131 |
+
} catch (error) {
|
| 132 |
+
showMessage(extractStatus, 'An error occurred during extraction.', true);
|
| 133 |
+
console.error('Extraction error:', error);
|
| 134 |
+
}
|
| 135 |
+
});
|
| 136 |
+
|
| 137 |
+
});
|
static/uploads/539841_1_En_23_Fig6_HTML.png
ADDED
|
static/uploads/benchmark.jpg
ADDED
|
Git LFS Details
|
static/uploads/download (1).png
ADDED
|
static/uploads/p0fcgbjj.png
ADDED
|
templates/index.html
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<!DOCTYPE html>
|
| 2 |
+
<html lang="en">
|
| 3 |
+
<head>
|
| 4 |
+
<meta charset="UTF-8">
|
| 5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
| 6 |
+
<title>Chart Analysis</title>
|
| 7 |
+
<link rel="stylesheet" href="{{ url_for('static', filename='css/style.css') }}">
|
| 8 |
+
</head>
|
| 9 |
+
<body>
|
| 10 |
+
<h1>📊 Chart Analysis</h1>
|
| 11 |
+
|
| 12 |
+
<!-- Image Upload Section -->
|
| 13 |
+
<div id="uploadSection">
|
| 14 |
+
<form id="uploadForm" enctype="multipart/form-data">
|
| 15 |
+
<label for="chart">Upload Chart:</label>
|
| 16 |
+
<input type="file" id="chart" name="image" accept="image/*">
|
| 17 |
+
<button type="submit">Upload</button>
|
| 18 |
+
</form>
|
| 19 |
+
<div id="uploadStatus"></div>
|
| 20 |
+
</div>
|
| 21 |
+
|
| 22 |
+
<!-- Image Display Section -->
|
| 23 |
+
<div id="imageSection" style="display: none;">
|
| 24 |
+
<h2>Uploaded Chart:</h2>
|
| 25 |
+
<img id="chartPreview" src="" alt="Uploaded Chart" style="max-width: 100%; height: auto;">
|
| 26 |
+
</div>
|
| 27 |
+
|
| 28 |
+
<!-- Analysis Section -->
|
| 29 |
+
<div id="analysisSection" style="display: none;">
|
| 30 |
+
<h2>Analyze Chart</h2>
|
| 31 |
+
<label for="query">Ask a question:</label>
|
| 32 |
+
<input type="text" id="query" placeholder="E.g., What is the highest value?">
|
| 33 |
+
<br>
|
| 34 |
+
<input type="checkbox" id="use_cot">
|
| 35 |
+
<label for="use_cot">Enable Chain-of-Thought</label>
|
| 36 |
+
<button id="analyzeButton">Analyze</button>
|
| 37 |
+
<div id="analysisResults"></div>
|
| 38 |
+
</div>
|
| 39 |
+
|
| 40 |
+
<!-- Extract Data Section -->
|
| 41 |
+
<div id="extractSection" style="display: none;">
|
| 42 |
+
<h2>Extract Data</h2>
|
| 43 |
+
<button id="extractButton">Extract Data Points</button>
|
| 44 |
+
<div id="extractStatus"></div>
|
| 45 |
+
</div>
|
| 46 |
+
|
| 47 |
+
<!-- Download Section -->
|
| 48 |
+
<div id="downloadSection" style="display: none;">
|
| 49 |
+
<h2>Download Data</h2>
|
| 50 |
+
<a id="downloadLink" href="#" download="extracted_data.csv">Download CSV</a>
|
| 51 |
+
</div>
|
| 52 |
+
|
| 53 |
+
<script src="{{ url_for('static', filename='js/script.js') }}"></script>
|
| 54 |
+
</body>
|
| 55 |
+
</html>
|